No announcement yet.

Vorshlag Track BMW E46 Development Thread

  • Filter
  • Time
  • Show
Clear All
new posts

  • Fair!
    started a topic Vorshlag Track BMW E46 Development Thread

    Vorshlag Track BMW E46 Development Thread

    Project Introduction August 31st, 2015: This forum build thread originally covered the repairs and track prep on my wife Amy's 2002 BMW E46 coupe, which we purchased August 20, 2015. This car will get track prep towards a NASA TT class (which I will discuss in more detail in a future post), but initially we will be doing some maintenance and repairs to get this car inspected and reliable, to let her "daily" in this little Bimmer. No, we're not just automatically sticking an LS1 V8 in the car (unless the engine is terminal, and maybe not even then). She wanted an inexpensive "cash car" to drive to work, and I wanted a car to test some new parts out with on track, so maybe this one will fit both needs.

    Later this thread kind of morphed into a catch-all for the a number of BMW E46 chassis track builds we tackled... a red 330 coupe, silver 328i Sedan, and later an endurance road race car. I have altered the thread title in 2019 to reflect this more broad coverage, not just one specific car.

    The real question is: Can we make a daily driven BMW competitive regionally in NASA Time Trial?

    In this thread we will also cover some tips on "How to buy an E46" and also show the "Common Things that Break" on these cars and illustrate the fixes. If you ever wanted to own a BMW E46 this might be a useful read. I'm showing the basic costs and hours spent on this build as we go, since we log everything into MyShopAssist, the service logging and customer interface software we use on all tasks and all jobs here at Vorshlag.

    Cross-posting this to these forums:

    I'm posting this little build thread on a number of forums, and some of you will be chomping at the bit to talk trash or point out past mistakes on an E46 330 build I did back in 2009. Yes, I made some mistakes on that build and was very frustrated with the oil pump drive issues that this car suffered. No, I didn't listen to several people who warned me that what I was doing (revving the M54 engine too high, not welding the oil pump nut, etc) were going to cause problems. Some of you folks were right, I admit that, and I unwisely ignored freely given internet advice.

    Before you crap up this thread with old history and personal attacks, please read the next few posts - where I will address the oil pump issues, harmonic balancer problems that car had (that we didn't know about until much later), and give my updated advice on the M54 "minimum oil system prep" to folks, learned from these mistakes (in my 2nd round of posts). That 330 was built 6 years ago, in my home garage, and I have learned a lot since then. Vorshlag has gone through a lot of growth in that period, with a lot of new employees added to our staff, new capabilities added to our shop, dozens of car builds under out belts, and hundreds of cars worked on since then.

    As always, in this build thread I will share the good and the bad, as well as track all hours and dollars spent. I might make mistakes, but we will always try to learn from them. I will still admit that I don't know everything about the E46 chassis. We work on a variety of cars, and not just BMWs. I will specifically ask for help in this thread on a few areas where others know more. So again, please read the next few posts before you chime in with your advice - your comments might already be addressed fully. Thank you for your patience.


    This is a tough question to answer. First, let me talk about Amy - I'm damned lucky and have a wife who not only puts up with my racing addiction, but she's a racer herself. I met her at a race, so I guess that's how you do it. She's won 3 Solo Nationals Championships, is a licensed NASA Time Trial Competitor and race winner, and we both love to enjoy many forms of motorsports. We spend 25-30 weekends a year doing autocross, HPDE and TT, and I will get her in the W2W Endurance E46 next year with us, some how.

    These are two more E46 cars I've owned. The 323i sedan (left) was just a daily. The 330Ci coupe (right) became an autocross/track car

    She daily drove the red E46 4 door 323i (above) for about a year, but it was very stock and thus remained very boring. She decided in 2013 that she wanted a "big comfy BMW", so we looked for then found her a clean 2001 740iL. She really liked that 7, but we probably only had passengers in the back seat a half dozen times in 2 years of ownership. Its just the two of us most of the time in any given vehicle, so the gigantic-ness of the long wheelbase 7 series was a waste. Even though we did a lot of repairs, restoration and little upgrades to that 740 at our shop, we don't really make anything unique for the E38 chassis... so it was useless as a "business promotional tool" or test bed for Vorshlag.

    We just sold both of Amy's previous cars, the 740iL and the TT3 Mustang, and she gets this E46 as her replacement?!

    Why does she need a car? Well back in July we sold Amy's 2011 Mustang GT, which she and I raced in NASA TT3 and other classes the past five years. That car was her daily driver from 2010 until 2013, when we got the 2001 BMW 740iL (2013-15) for her to drive back and forth to work. We also sold that E38 a few weeks ago, and had a few bucks left from that sale to spend on her next daily driver.

    But one thing kept nagging me: We have been sharing race cars for years, she and I, and if I've learned one thing about that, it is that sharing a race car sucks. You get half the seat time at a track weekend, or you end up putting twice the laps on a car during a given day (running in 2 different run groups), which is very hard on the car. It never gets a chance to cool off or any down time to make tuning changes or repairs without being rushed. Amy and I shared the TT3 Mustang and then we built the TTC Corvette (1992 LT1 Corvette, Project #DangerZone) early in 2015, and we finally had them both at the track... for one NASA weekend this year. But it was nice, since we didn't have to share!

    Separate but equal: having his and hers race cars is ideal, so we don't double-up on a single car on a race weekend!

    So when it was time to move the 7 series on down the road we discussed a half dozen options for her next daily driver, which I was hoping to ALSO use for some new parts development and rack up some more racing wins for Vorshlag. Every car we own has to "do work" for Vorshlag, and having a daily driver that could at the very least test new parts was part of the deal. We looked for a clean E30, which would be "retro cool" after a lot of restoration and mods, but clean E30s are going for big $. Then we looked at E36s, but we have done that chassis many times in the past, and they are getting a bit long in the tooth.

    She said she wanted a BRZ or FR-S, and I worked up a wicked NASA TTC track build that she was on board with, until she saw the budget. No monthly financing payments was a requirement for this next car, and even used these are still $15-18K cars (oldest is 2013 model). It had to be a cheap cash car. We thought about Subarus (too kooky), Miatas (she daily drove one before - too slow, too small), even some domestics... but nothing had the bang-per-buck aspect of the E46 right now, at this moment.

    We had some money stashed away after selling the 740, so I looked for a clean 330 for $4-5K. Nope, they don't exist unless it has 200K+ miles and an automatic. Craigslist searching (yuck), AutoTrader (pretty much all dealers), and other sources. But being a small business owner, cash flow comes and goes, and one day "poof" the cash from the 740 was used for something for the biz - paying taxes, payroll, vendors - something. So my budget was slashed and the E46 choices at this new price range started to look pretty sketchy.

    This is our cheap, 197K mile 2002 325Ci project car. Yes, we know, the Foose wheels are Fooking ugly! They will be gone soon

    I put a call out on Facebook, and once again was rewarded with a diamond in the rough. A friend that worked at a used car dealer had a lead: 2002 325Ci, 5-speed, 197K miles, $1800. It needed more work than they wanted to invest, so they were willing to let it go cheap to someone who could fix it. Ding! Ding! Ding! We have a winner!

    This E46 we just bought is a bit rough around the edges (read below for description of problems) but since we bought it well I'm confident we can fix whatever is wrong with it. I test drove and checked the car out personally and couldn't see any frame damage, rust (Texas car all its life), it had a clear title, and it didn't run like it had a head gasket or oiling system problem (both potential "gotchas" on these cars). Everything else that could be wrong I'm not afraid to fix. Vorshlag has serviced 100's BMWs over the years and we are well versed in most of the problems and fixes of the E46, as well as performance upgrades that help these cars perform better on track and in autocross.

    whiskey dent: Dents or scratches on a vehicle due to drinking and driving or hitting an object with your vehicle while intoxicated.
    The car has a lot of "whiskey dents", small dings and bumps on the body that don't effect the function of the car, just make it a bit ugly (see the two pics above). It also had a light front end hit and another rear tap, but we will fix those issues as we go. Nothing that prevents it from being a good daily driver. The project name "Jack Daniels" comes from the Whiskey Dents, obviously. No, I don't condone drinking and driving - not hardly - but the name fits.

    These cars can get light quickly. This car lost 434 pounds in 2 hours (interior removal) and still has all the factory glass and steel!

    We like the E46 chassis, and have four of these in the shop right now. The silver E46 1999 328i 5-spd sedan above was purchased a few months back for an "employee owned shop endurance race car" project, and we already knocked a bunch of weight out of the car. This E46 328i was also well under $2K, also from a good Facebook friend lead, who had a tough-to-sell car, so it had some miles and needed some TLC. We can easily get weight out of one when we make it a real race car, as shown above. The door panels, carpets and seats on these cars are HEAVY! But this car needs to keep some of the interior, because its going to double-duty...


    "Do as I say, not as I do." Normally, I warn customers that taking their daily driver and making it ALSO work as their track car is a TERRIBLE idea. It always involves huge compromises that make it a less comfortable daily driver, a heavy/slow/less competitive race car, or both. But this is what SO many people want to do - I'd say half our customers do this! - so why don't we try this "dual purpose build" for once and document what works and what doesn't? Can we win a TT race, or even set a track record, in a REAL DEAL, full interior, air conditioned, daily driven street car? We did it with two BMWs before (below), but that was several years ago - when NASA Time Trial wasn't nearly as competitive as it is today.

    We took both the E46 330 and E36 M3 above to NASA TT wins and a track record each - when both were daily driven at the time

    This 2002 325Ci will be both Amy's daily driver (she has a mild 8 mile commute, all on secondary roads with lots of stop lights) and we will use will try to make it a competitive NASA Time Trial build and let her go have some fun in TT. The goal is to make it reliable and fast, allowing her to have as much seat time as possible. We're already building a new "shop car" E46 V8 for me for 2016 (TT1), plus the Endurance car E46 for the shop employees (1999 328i for WRL), and this E46 (TTE or TTD?), so we will have three shop E46 race cars in 2016, if everything goes to plan (when does it ever?!).

    Due to other expenses in owning a growing business, and two other race cars already designated as "shop cars", this 325 is being built on a very small budget. Not "$2000 total" like the GRM E30 we built before, but more like the TTC '92 Corvette we ran this year and has it's own Forum Build Thread. I've had customers and even people in the motorsports industry remark that those two "budget builds" (GRM E30 + Dangerzone) were some of the favorite we've done, more so than our more wild builds, so who knows? Those of you who dig that sort of thing might enjoy the build-up.

    continued below
    Last edited by Fair!; 07-27-2019, 04:40 PM.

  • Fair!
    continued from above

    New inner/outer tie rods went on along with the de-powered steering rack, new Lower Control Arms, and the LCA bushings from Whiteline.


    Like all BMW E46 chassis, the rear subframe mounting points on the tub need reinforcement, so that was a big task I saved for the new guy, who was a welder for use for a number of months. We do these jobs periodically for customers and I like to break in a new tech on a shop car instead of on a customer's car.

    In the last week of May 2020 we made room on the lift for a couple of days to tackle this work on the clock. Brad and Evan showed the new guy how to do it and helped remove the fuel tank and rear subframe.

    After the chassis was cleaned of paint and undercoating (the least fun part of this job) the CSM reinforcements were bolted into place and it was time to TIG.

    The 6 plates were TIG welded, seam sealed, primed and painted within a couple of days. While the OEM fuel tank was out I went and power washed that to look as good as new.

    One of the areas on the chassis I have personally seen fail (at least on the E36 chassis) is at the RTAB cassette mount. So I asked Myles to make a tracing of the OEM mounting holes and shape, design a CAD drawing, then cut a pair of reinforcements. With one small tweak we had a new product, and we are using our chassis to test it out on. Which is part of the reason why we're building this car.

    With the RTAB reinforcement welded in, seam sealed, primed and painted it was finally time to install the upgraded, powder coated, and stronger E46 M3 rear subframe and diff. This move let's us go from an open 188mm diff to a limited slip 210mm M3 diff.


    As you loyal readers know, we're upgrading our E46 330Ci to use an E46 M3 rear subframe - brake to brake. Gives us the stronger 210mm LSD diff housing, stronger M3 trailing arms, beefier M3 hubs/axles, and bigger M3 rear brakes. We finally had the rear subframe assembly reinforced subframe, bushings installed, and new sealed sphericals installed - so this was a complete weight for the unit, without axles. 222 pounds of aluminum and steel.

    A big hunk of that 222 pounds is the diff (95.4 pounds), another big chunk are the steel trailing arms (68.6 pounds).

    There were several upgrades done along the way to get this rear M3 subframe assembly read for endurance racing - and I'm sure we'll see something else in track testing. We have shown the subframe blasted, seam welded, reinforced, and powder coated in previous forum thread posts.

    This assembly went into the car with SPL Parts spherical rear camber links, shown above. This is a part we have used on a number of BMW builds and we know the guys at SPL very well.

    This all went into the reinforced chassis without any issues, lined up and bolted up. It was time to put it on the ground and see how it looked...


    It didn't take long to see the issue with our first of FOUR different left rear trailing arms - it was bent (see right vs left pics below). This arm was from a rear subframe I had purchased along with a car more than a year previous, so it was too late to cry sour grapes.

    With the naked eye you couldn't see any wrinkle or bend in the hollow cast steel arm - it wasn't until we had a replacement arm next to this one that the bend was obvious. Not a part you try to "fix", either. That bent arm is scrap at this point.

    Luckily I had another E46 M3 rear subframe assembly I had bought in late 2019, so that arm was pulled for use on the team car. But the bad luck just kept coming. As the rear wheel hubs were being removed for a rear wheel bearing replacement, it just broke. Yes, we know how to do this job and have done it many times... it was a somewhat rusty arm, so that didn't make it far. Wasted probably 2 hours on this one before we got to this point.

    So I bought another E46 M3 trailing arm, and this one *came with the axle. It also came with a single Ground Control spherical RTAB, which Tim removed - we're trying to test the Sealed Spherical we had installed on the previous bent trailing arm. (*NOTE - if it comes with the axle it is because they couldn't get it off!)

    Tim and Magan fought with this 3rd trailing arm on the bench - the axle didn't want to come out. They got the upper and lower sphericals replaced and the sealed spherical RTAB, and I told them to put it on the car and we could use a slide hammer and heat on the axle...

    Once on the car a couple of weeks later (remember: we're only working on this one night a week for a few hours, at best) they tried heat, slide hammers, but that axle will NOT come out of the hub. The end was ruined before it got to us (at the junkyard that sold it to me). I've since learned of a trick to get this out - soaking the axle in some "magic sauce" (50/50 mix of Acetone and ATF fluid), which we will do later to salvage this trailing arm.

    But at the time I was getting sick of this damn trailing arm holding up the build and burning up hours - the bearings and RTABs were moved to each arm, the brake backing plate modified each time, etc. So I kept "throwing money at the problem", and bought bigger tools and more trailing arms until we had a setup that worked.

    Forth time's the charm! This was the best looking used trailing arm so far, and one night Tim got that one swapped to the new bushings, RTAB, hub removed, and on the car. Then he and I got the snap ring extracted, then the wheel bearing pulled.

    Next up the arm comes off the car, the new wheel bearing gets pressed in, then the snap ring, then the hub is pressed in, then it goes on the car, then it gets the new axle for that side. THEN the car can go on the ground and get ride heights set. Whew! That whole process was some nonsense, but we should get at least 2 spare hubs and a full spare trailing arm assembly out of the spare parts, once we soak arm #3 with the "magic sauce" and get that rusty axle out.


    On the upper arms there are rubber bushings on the inboard side. Rubber bushings are the Devil - they allow lots of deflection under lateral and braking loads, which we don't want. So we invested in these Rogue Engineering spherical bushed housings for this location, shown below left.

    Tim used some sockets and the 20 ton press to push out the old rubber bushings and housings, then used an old mechanic's trick - tossed the Rogue spherical housings in the freezer for a few hours.

    That shrinks up the bushing and allows it to slide into place in the upper control arms nicely.

    The Rogue housings have a face on one end that you press to the control arm. The other end has a groove for a snap ring, which secures into the arm. Inside this housing is the spherical bearing, with bushings that press inside that to allow the bolt to fit and provide articulation. Above right is this end of the re-bushed upper arm bolted into the E46 M3 subframe.

    The trailing arm has two sealed spherical bearings from the factory - and we replaced the old units. On. All. Four. Trailing. Arms. Getting the old units out was relatively easy using a BMW specific press and cup tool set we have.

    Pressing in the new units is pretty easy - they just press in with the same tools. Those shouldn't be a problem for a long time on the final arm that went into the E46. They don't wear as quickly as "open" spherical bearings do, which some racers like to use. We try to use sealed sphericals whenever possible - the rubber seal keeps rain and road grit from destroying the metal ball and surface of the spherical, just as the factory intended.


    There is a LOT more work completed, but the "write-up" was taking too long and so I cut it short here. Next time I will show the 18x11" wheels, rear unibody and front fender cutting / clearance work for the Clinched flares, and the "real" 5.3L LS V8 and drivetrain install.

    Sway bars, and the ensuring drama that a new brand brought with it. The rolled radiator mounting, steering wheel / hub / quick release, replacing missing things like door latches and handles, and more.

    Thanks for reading!

    Terry @ Vorshlag
    Last edited by mylesloan; 09-24-2020, 02:06 PM.

    Leave a comment:

  • Fair!
    Project update for September 23rd, 2020: It has been 6 months since my last post here, and not a lot of things went according to plan. We got crazy busy during the pandemic, lost some manpower, but we are still working on our E46 endurance car a little every week. I spent part of Labor day weekend writing this update to catch us up to the present, which helped me realize I needed to order a few missing parts, as well as update some product entries for things we sell for E46 models. Then I got busy and had to re-start my write-up again.

    There is some progress to share, with some "backwards" progress in one area, and nothing happened as fast as we liked. As racing resumed, so did the pro racing support schedule for two of our team members, Tim and Magan, who regularly travel to events for trackside support. "Luckily" none of the other Vorshlag shop cars are complete so I wasn't out for almost any of 2020 going to races (this actually sucked). More time to work on this car - and more motivation.


    After our show-and-tell with the E46 we pulled the mockup engine out for the last time. We had the new transmission crossmember developed, test fit two new oil pans, and learned a lot with this task.

    Pulling the radiator support out makes for a FAST drivetrain removal (engine and trans together), and I encourage any endurance racing team to make that happen on their cars. Removing engines is often a necessary task.


    So the dash bar (above) that came with the Hanksville cage kit was made to go pretty high up and would pretty much preclude the use of the dash. And I really wanted to keep the OEM dash pad, for appearances as well as to make for better "glare protection" and gauge visibility on sunny race days. So it was time to make some changes to the cage. We looked at the OEM dash bar, which has all sorts of integrated bracketry to hold the dash pad.

    In March on one of our work nights Tim, Magan and I tackled the dash mockup while Myles was welding on other parts of the cage. We removed the Hanksville dash bar and mocked up an OEM dash in the car (we have two - tan and gray ones). There was going to be interference and notching needed but there wasn't an elegant way to mount the shell.

    We removed the dash bar structure from the dash shell and started hacking away at it. To fit it between the two main A-pillar down bars we had to cut the OEM dash bar in half.

    We cut the main bar to the right of the steering column support, notched the ends to clear the down bars, and put it into the car. Then tack welded it back together.

    This way the dash pad has some of the OEM structure - which is a lot better than how some dash pads get installed. I cannot stand a floppy dash that is bouncing around willy nilly.

    Since we compromised the structure of the bolt-in dash bar (we really had to hack up the ends) as well as cut it in half. We built a new straight dash bar to mount just next to the OEM bar. This is going to be hidden under the dash but this one has real structure and ties into the cage in case of a side impact. We will tie the OEM bar to this one, for the structure needed to hold the column. We still need to notch the plastic dash pad to fit around all of this, but I will show that in a future update.


    The composite Seibon hood (24 pounds) is considerably lighter than the stock steel hood (42 pounds), but it is weaker in some ways also. When some of the crew were man handling the hood into place back in March they only had one bolt on one side fastened and somehow with the hood struts installed on that hinge it was tilted, which cracked the mounting flange for the hinges on one side. I've seen similar damage done when using (mostly aftermarket) gas lift hood strut kits.

    I was less than thrilled, but "stuff happens" and at least it wasn't a customer's car. Evan extracted the threaded insert plate that had pulled out and sanded the areas to be repaired with more layers of glass and resin.

    He cut a space for that into the composite then used fiberglass mat and resin to cover that plate and reinforced the whole area. A little primer and it is as good if not better than new.

    We installed the repaired composite hood for a while with one new OEM gas lift strut on one side, but it still felt like the hood was going to fly off when we lifted it up. Just sitting there with the hood up it was bending that side, so we had to do something different. I had an idea...

    In late August I installed this S550 Mustang hood prop rod setup. This is an aftermarket, stainless steel version of an OEM prop rod made for 2015-up Mustangs, which was easy enough to install. I added an M6 threaded insert to the radiator support and bolted it on during one of our work nights. Still might tweak this a bit after we get the cold air intake hose and airbox in, but this way we can hold the hood up and NOT have the gas struts trying to bend the hood in half.


    This car was stripped of the pedal box. We had a loaner for a bit to do some initial mock-up, but we needed to buy our own set of E46 manual transmission pedals and I found this on eBay - the home for junkyard parts.

    These bolted in back in late February, but we have not yet installed the throttle pedal. We're using a modified LS3 Corvette Drive By Wire pedal compatible with the Holley Terminator X-Max EFI system we chose.

    We have made a lot of these LS3 brackets for various one-off LS swaps in the past, but for the E46 we are going to create a production pedal bracket kit - like we did for our S550 Mustang LS swap (above). We might incorporate the mounting into the Prius steering column center bearing adapter mount, too. More on that soon.


    Normally when we take a cage job we can knock it out in a few weeks. Or sometimes it is built in stages over the course of a major build - like when we have to do a lot of wiring or interior work, we want the door bars to go in last, as they are a struggle to work around once in place.

    In this case, we're doing the cage work at best for a few hours one night a week, with one fabricator who has a lot going on (Myles). He is also an engineer, CNC operator, and just had his first baby - so he's been pretty busy! Since our last post he has tackled more of the TIG welding and Tim has helped him on a few custom bars (changing the "X" bar we ordered to a NASCAR bar on the passenger side). We did add invest in an air-over-hydraulic kit for our JD2 tubing bender, which makes new tubes easier to make and bends are more accurate.

    So the cage is making progress, just slower than we would on a customer's car - because we don't have 8 hours a day or a full time fabricator to tackle the cage work on this "after-hours" employee build.

    The main tubes are all in place now and we are just waiting to finish weld in things like the dash bar, an FIA vertical bar we are adding, and one roof bar.


    We have been talking about using an "Electric Power Assist Steering" (EPAS) column in this car since the beginning but I have not shown that yet. Why? because unlike aftermarket supplied units we have used in the past, we're trying to do this with cheaper OEM based column.

    The aftermarket EPAS unit above worked well enough in this V8 E46 M3, and I got some good first-hand experience with this on track this January. But it was expensive ($1800-ish) and required a lot of work to join their electric motor to the E46 steering column. It does have a steering force controller on a dial, which is nice, but it wasn't working 100% of the time in our track test. We're chasing issues with that now.

    Instead we're trying to make a steering column from a Toyota Prius model retrofit completely into our E46 330 endurance chassis. This could make for a lot less hassle during the install or for replacements later (expect everything to break on an endurance car at some point). We have researched several units and some racers have used the 2004-09 Prius unit (above right). But we have very different height drivers in our car, so the tilt/telescope feature of the 2010-14 Prius might work better for us. We bought both to test with.

    Myles has designed and cut out a couple of different brackets that were bolted or tack welded to the BMW steering column mount, to test both the early and late Prius columns. The column was "clocked" so that the motor was not down by our legs this time, as shown above.

    To complicate matters the chassis we started with came with no steering column at all - it was pretty stripped - so we didn't have a good gauge of where the steering wheel should be. So we paused the steering column testing for a bit to wrap up the E46 seat bracket base, get the seat installed on a slider as low as possible, then proceed with more Prius steering column mock-ups.

    It wasn't until the seat was mounted and the cage largely complete (late April 2020) before we could "test sit" the column. Above is the early tilt version shown at two tilt heights. We could never find the correct Toyota wiring diagrams and pin-outs for the later tilt + telescoping version, so that version will have to wait. We got some schematics, but they were wrong and didn't match the 2011 column we bought.

    Tim sourced a Flaming River U-joint that ties into the base of the steering column's intermediate shaft splines and goes to a 1" DD shaft. We then connected the other end to another shaft that will have our BMW 54 spline U-joint at the steering rack. A "center bearing" at the fire wall is needed to keep this multi-piece shaft lined up (a support bearing at the firewall is normal).

    We have the center bearing and will fab up a plate to cover the MASSIVE hole in the firewall from removing the OEM bits there. We have since wired in the early Prius column and await getting the car back on the ground to test this further. I made some progress on the custom, bolt-in "filler" panel that will mount the center bearing, which I will show next time.


    Not much to show here yet - just that we ordered and received our Painless chassis harness kit with fuse box as well as the Holley Terminator X-Max harness and computer to run the LS engine.

    We will use the Painless harness to replace the missing OEM chassis wiring harness and fuse box, and the Holley system will tie into that to control the engine. Will share more when we have progress to show.


    On a work night in late May 2020 Tim started tearing down our E46 steering rack to "de-power" the hydraulic power assisted unit. This will remove some resistance internally and allow the EPAS column to add the power assist, removing high pressure (and flammable) hydraulic power steering fluid from the car.

    After we power washed the exterior of the rack, Tim tore it down like he would any Miata rack - which he has de-powered many times. The pinion was removed, then the rack portion. On the horizontal shaft in the rack, the separating piston was removed.

    This is what allows for the assist - as hydraulic fluid pushes on the piston left or right. With that piston removed - viola! - it is de-powered. He re-assembled the entire unit with grease (the pics above, shown out of order) and then got it ready to go back into the car with new tie rods and boots.


    I showed the Horsepower Research 6.3L cathedral port LS engine build slated for our endurance car here in a previous installation. That was completed during the 'rona, but I stole it for use in my LS550 swap development, shown below. That project car is on the final stretch and we needed a ~500 whp engine to get this going for Phase 1 of that build.

    This 6.3L LS6 will be used for initial testing on the Mustang then it will go to it's true home - our Endurance E46 here. In April we took our "backup" engine and rebuilt that, also at HPR. I horse traded for an aluminum 5.3L truck LS engine and it has similar cathedral port heads, just with a smaller displacement.

    Turns our this engine was pretty worn out - pistons, rings, and bearings were worn but not overly damaged. The pistons were replaced, as were the rings, bearings, and more. Didn't need an overbore, just a "kiss" of the hone, some bearing setup, a spicier camshaft / valve springs / retainers / locks, new roller lifters, custom pushrods, and reassembly. The worked happened during the biggest parts shortage period during the pandemic and HPR got this done unusually quickly, since it needed so few parts. It was done in late May and we didn't get it fully assembled and into the car until June.


    With as many sphericals as we have on this chassis, normally you'd think we would go right to a spherical Lower Control Arm bushing at the factory "lollipop". In the past we have used Powerflex 3-piece LCA bushings, which have to re-use the OEM lollipop casting. On this car I wanted to do some long term testing with the Whiteline W52519 LCA bushing and housing kit. It comes with the same 3-piece (rotating) urethane bushings with new lollipop castings.

    We installed these with new non-M E46 Lower Control Arms, which have new ball joints in both locations. This will all be a test to see how the OEM style arms and poly bushings work out on the endurance car. A one-piece poly bushing would be a BAD choice here, but with a 2-piece bushing it allows for proper articulation.

    Long term we might have some fancy doo-dad tubular arms with spherical ends - but the costs go up by a factor of at least 5 over what we have here. Having driven E46 cars with "magical" tubular arms and geometry fixes it didn't seem life changing as some claim.

    Again, it is something we can likely test down the road to see IF IT MAKES THE CAR FASTER. If it does, we will do it. If it has drawbacks (like cost, reliability, etc) we will fall back to this setup.

    continued below

    Leave a comment:

  • Fair!
    continued from above

    Out back was a bit trickier. MCS wanted us to run their inverted, eye-to-eye style rear shock with a 22mm shaft and coilover spring mounting, using a dual / helper spring setup to keep the tire loaded - even at full droop.

    This required the use of the MCS "eye" upper shock mount, which bolts into the stock shock tower (see below). Brad mounted that and I was happy with how much inboard wheel clearance we still had. Whew!

    This type of spring mounting can sometimes compromise inboard wheel room - a coilover rear on the E36 chassis absolutely will eat up tire room, but the E46 chassis does not suffer from this space constraint. We will need to reinforce the rear shock tower to take full suspension loads, instead of just damper loads, however. We have some ideas and will share that work in a future update.

    Brad handled this MCS install in early February 2020, which let us mount the 17x10" wheels and roll the car out of that back bay for the first time in months. Big step, seeing the car down on 4 wheels and rolling again!


    Shortly after getting the suspension installed we were able to get the E46 over to a 2-post lift and up in the air.

    I asked Brad to temporarily tape the Clinched flares (we showed last time) to the car at both ends on the driver's side. These are made to be "trimmed to fit" the contours of your car, and this is where the look and fit of these will improve. For now we're just taping them in place.

    This let Jason come out and inspect the clearance inboard, outboard, and relative to the flares. These flares are going to be big enough for our 18x11" wheel and 315/30/18 (or thereabouts) 200 treadware tire package.

    The test wheels shown here are NOT our final race wheels, and they are already 10" wide. We're looking to add another inch of wheel width and a good bit more tire. The "stock vs flared" pictures above should show how much room we gain with these flares. Jason was able to spec the wheels so that the same set can be used front and rear (fewer spares needed, and they can rotate) with a 12mm spacer up front, which is normal for most BMW wheels. These wheels were ordered from Forgestar before their additional bespoke wheel charge came into effect, which was a bit of a surprise in March 2020 when that came down.


    We had been debating head lights to use and how to mount them. The factory "radiator core support" (shown below) is the easiest way to mount the headlights, but it has a bunch of structure we don't need. We have bought a number of these over the years from the import suppliers and they all worked just fine. Looking through our pile of spares we had another brand new one in stock, so we decided to splurge the $55 already spent and use it.

    Our car didn't come with one, as it had been in a front end hit. These are pretty common to replace after any small accident, and BMW keeps them painted black no matter what color E46 they made. It didn't take Evan more than a few minutes to bolt this in place, then we started looking at the extra plastic clips and mounts needed to bolt the headlights in place.

    Instead of ordering a half dozen special clips from Germany we decided to add nutserts into those square holes in the core instead. Evan drilled the square holes round, then installed some M5 rivnuts. We used some old headlights to make sure they lined up and they did.

    The radiator support was then cut up quite a bit - looking for room to fit the radiator. Our goal was to open up a narrow spot and then shove a wider than stock radiator and roll it forward into all of this area we added by making a tubular bumper beam. Unfortunately the headlights themselves are wide and we don't gain a lot of room between the lights to roll the radiator into. But we did remove a lot of structure that was blocking airflow.

    The "mock-up" headlights we had on hand were fitted in place when the rivnuts were being added. These looked rough, and were some old OEM units we had leftover from a customer's build when we installed new headlights and turn signal housings on his M3. Tim wondered - can we clean these up and use them? I was doubtful...

    Now for headlights I was ready to spend a few hundred on some nice aftermarket replacements but these aren't really needed on this race car. The halos, the smoked turn signals, not really worth it. These are some I purchased for another E46 we covered in this same thread, years ago.

    Brad brought out his headlight polishing kit and got started wet sanding and polishing the lenses...

    They cleaned up pretty well, surprisingly. Enough to not be an eye sore for our "show and tell". I still might buy some new lenses later (they are amazingly inexpensive) and we can install those with some very bright LED bulbs from Diode Dynamics. Possibly even some yellow XPEL film to protect the new lenses. Will show more here another time.


    Many months of work and a bit of a thrash in January and February came to a head when we got the car on the ground, on MCS dampers, with an LS engine and headers installed, wheels and tires on and rolling, headlights, M3 bumper cover, bumper beam, and the red steel hood installed.

    Since we had the car on the lift we installed one of the Sparco race seats, a radiator, stuck both doors in the back, the heater box (which I haven't showed yet) was set inside, and the electric steering column (also not shown much) was bolted in place. This car has both front 14" rotors and one of the Brembo calipers, and the E46 M3 rear rotors are installed. All of the tubes from the cage kit were inside the car, if not welded in place already. Still has the old non-M subframe and diff, for now. We even loaded the clutch, flywheel and pressure place inside. A Mishimoto radiator was set on top of the engine, and a 22 circuit wiring harness was placed into the trunk, too. Then we got this weight.

    2112 pounds was lower than any of us guessed, but a decent amount. We're still missing the the transmission + bellhousing, windshield, driveshaft, swaybars, plumbing, fuel tank + fluids, and the larger E46 M3 diff housing is going to be heavier than the medium case in the car now. But the steel hood and trunk are being replaced with carbon, which will save a little. So we're off by 200-300 pounds. Still, it was a very encouraging number.

    Due to this latest weight check we have a good idea of where we will end up now, and this is helping us make smarter decisions as we wrap up the build. We will of course keep taking weights and posting them, even if the car is incomplete. These data points have been helpful to some.


    On March 3rd I was working late and a freight truck arrived at 7 pm, in the dark, while raining. I had to scramble a bit to get the fork lift hooked up and unload this big pallet of carbon fiber parts. I dubbed it "The Carboning!" and was as excited as a kid on Christmas.

    We unloaded the pallet the next day and unboxed all of he Anderson Composites and Seibon parts. These are two sides of the same company, with Anderson being their domestic car arm and Seibon the import car arm. For our S550 Mustang I received a carbon trunk and carbon doors, shown above.

    For our BMW E46 project we got a carbon hood and a carbon trunk. The quality and finish on all of these was great. These Seibon pieces are not "dry carbon" motorsports parts (which they also make) but their more affordable carbon-over-fiberglass / shiny gel coat versions. Still lighter than stock, but not as light as you could see.

    Of course we took weights on everything. On the trunk we went from a 27.7 pound steel unit to a 15.6 pound carbon unit. That's a 12.1 pound drop, or a savings of 43%.

    The steel 330 hood was 44.5 pounds, and the carbon version was 24.2 - for a drop of 20,3 pounds and a savings of 46%.

    In addition the new hood is the "bulged" M3 style and includes a set of carbon grills (which are removable) as well as four massive, carbon vent panels (also removable). The outside carbon surfaces are very glossy and the weave is laid out nicely.

    Brad installed the Seibon trunk in about a half hour, just needing to shim the hinges a bit to get the body lines perfect. This required zero sanding or trimming of the actual part, which is pretty rare for composite parts.

    Jason and I spent about an hour and a half fitting the hood. This was mostly due to the poorly aligned front fenders, which had huge gaps to the steel hood. We slotted some of the mounting holes there and got the body lines pretty darned good, too. Really looks good with this carbon installed, of course.


    This car was missing anything and everything of value, and that included the pedals. After getting a loaner set that I had to give back I broke down and ordered a clutch/brake pedal assembly for $102 shipped from eBay. Tim got those installed on a work night pretty quickly. Installing those allowed us to bolt on the E46 brake booster we had, on the other side of the firewall.

    We found an SSR fiberglass sunroof panel that I had ordered back in 2015 for another E46 coupe, and this will be used on this car now.

    Another missing part on this chassis were the rear tail light housings, along with the trunk mounted reflectors. I bought a set of the brighter LED versions for this E46 coupe.

    Tim installed these into the carbon trunk in early March - nothing tricky here, just a straight bolt-in. As we have done before, we will "direct wire" these around the CAN network that normally controls these brake/tail/turn/reverse lights. We're replacing the entire wiring harness on this chassis.

    This set of LED tails + carbon trunk really set off the back of the car. We have a new, fake, custom license plate we will add and show next time, too.


    That's a big chunk of work to cover this time. We have other work that has been completed but we're not ready to show all of that just yet - like a brand new crossmember to support a new transmission for this E46 LS swap. Lots of parts have arrived for the front suspension, too.

    New inner/outer tie rods, Lower Control Arms, and these LCA bushings from Whiteline with a 2-piece bushing (that allows for proper articulation). We're using this car as a test bed, remember - and this is a new part to us. Rear subframe reinforcement work needs to be done, exhaust needs to be built, and more.

    At the same time as this E46 endurance car update was written we also posted an update on our GMT800 shop truck build thread, which went through a ton of changes. You can read that here.

    Until next time... thanks for reading!
    Last edited by Fair!; 03-24-2020, 07:49 AM.

    Leave a comment:

  • Fair!
    continued from above


    We had a bit of a dead line for a "show and tell" meeting with a supplier in February 2020, who needed to see this race car. It was a good incentive for us to push harder and get more things done to the E46 - like installing an LS engine, installing suspension, having the cage mostly done, nose mounted, etc.

    We had the "backup" aluminum 5.3L long block up at HPR but brought it back and mounted a real road race style oil pan to the engine, then stuck it into the car.

    Of course we had a bunch of LS swap parts we sell to use for this, but luckily we had some early prototype headers, our original prototype mounts, and a few other leftovers to use. This Summit steel road race oil pan above fits with miles to spare - something we wanted to test on this E46 swap anyway.

    We built our shop 2015 Mustang #LS550 swap around this oil pan, and it seems to fit anywhere the 1998-02 Camaro pan or any of the Holley LS pan fit. We will test this in this road race setup on both the 5.3L and the 6.3L stroker that will go in later. With a wet sump oiling system and an Accusump, of course.

    Great fit on the kick-out style oil pan, so we'll keep that. The oil filter mount comes off for use with a remote filter and oil cooler, which we will show later. Found these tall LS valve covers with the "CHEVROLET" script, and we will use these with remote coil mounting.

    This is a Gen IV truck engine - which all come with DOD features we have to bypass. This requires a unique upper cover (ICT Billet, shown above), and Gen III style front cover, timing chain, cam shaft, and lifters. We're going to do initial testing with this 5.3L so we're getting it ready.

    Then we installed the Dorman "LS2" intake and a 90mm DBW throttle body. Then a set of our E46 stainless long tube headers.

    That's as far as we got for the show and tell - the motor has since been removed and then reinstalled with a new transmission.


    As I mentioned last time, we had a few 210mm M3 diff housings (which come with limited slip differentials from the factory) and two complete E46 M3 rear subframe assemblies, as shown below left. Everything on the E46 M3 version is stronger - the differential housing, trailing arms, rear brakes, and more. The E46 non-M rear subframe (see below right) has a number of disadvantages.

    In the long run it will be more cost effective for us to convert our 330Ci chassis to use the E46 M3 rear subframe and M3 diff than to convert the 188 mm Medium Case E46 housings to limited slip.

    Since none of the "non-M" E46 cars ever came with a limited slip, and many of those medium case housings have a ring gear welded to the diff case, it can get pretty costly to convert one to limited slip. I've done this conversion on non-M E46 cars a few times and it is always shocking how costly this is to do. The differential mounts on the non-M case are also different, and less than ideal (see above right). The available gear ratios on the larger M3 housing also work better for our V8 engine. We will be beefing up even the M3 bits, and will show the various steps below.


    We have a few complete E46 M3 rear subframe assemblies, brake to brake. We buy these when they come up for sale, and in one case we had a rusty version that was in a northern car that we picked up cheap. We took the ugliest of our available rear subframe assemblies apart to use for this project.

    This involved removing all of the subframe bushings, shown above left. This took a little work but they came out relatively uneventfully using our many BMW specific bushing tools.

    You can see the rusty surface of this subframe housing, above. It wasn't deep rusty, just ugly surface stuff. I took this and dropped it off to be bead blasted in November 2019. We got it back in mid December but didn't get a chance to work on it further until January 2020.


    While the subframe was coming apart we decided to test a new product we had found. The Rear Trailing Arm Bushing (RTAB) on the BMW E36 and E46 chassis is a complicated joint that has to pivot and rotate in 2 different axis.

    We don't use polyurethane in this joint, ever. Instead, for the past 16 years we've been in business, we press in an OEM rubber bushing + our RTAB "limiters", which we machine from UMHW for its self-lubricating properties - as shown above. This limits how much toe change can happen with full articulation of this rear trailing arm. A better solution for a race car is to use an aftermarket spherical metal bushing assembly here. The former works well on street and dual purpose cars, the latter not so much. A little road grit + rain will quickly wipe out an all metal bushing located so close to the ground.

    For this build we wanted to try a new "sealed" spherical bushing that Jason found. This should give us the best of both worlds. Water proofing a spherical bushing (like BMW does for some other rear suspension locations) would allow for full articulation in 2 axis, without the rattle and bang that worn sphericals give you in a short amount of street driving. Tim removed the M3 rear trailing arms (above left) from the subframe, then Myles and Jason pressed out the old bushings.

    We found an OEM replacement sealed spherical that was almost the right size and we made it work in this location. It wasn't easy, and it took some custom machine work and some other compromises. For now we're not releasing what we did or offering this as a kit to sell until we can test this car on track. With a little bit of work we think we can make this easier to install for the DIY crowd.

    We installed and fitted the bushings on the two sides two different ways, testing two methods. It was "more than a press fit" getting the spherical housing into the Rear Trailing Arm. Once we got the fit where we liked it, they were both pressed into the arms with the giant C-clamp bushing press shown.

    For now this isn't an easy "DIY" job but we're working on some other ways to make this work better. The articulation is perfect (above right) and should be the right solution for E36 and E46 chassis cars, once we can make the bushing more perfected for this application. More on this later.


    There were a number of things I wanted us to stitch weld as well as some reinforcements to make.

    Up first was a pair of brackets that held the rear swaybar. Nobody makes a reinforcement kit for the E46 M3 subframe so Myles drew up and CNC cut out these plates above.

    Likewise the two rear differential cover mounting brackets looked a little underwhelming, so I asked Myles to make the brackets above.

    After he made some cardboard templates and we discussed a number of tweaks it was time to turn them into CAD drawings then CNC cut them on the plasma table. After they are cleaned up and bent they fit these locations well. After showing the picture above a number of folks reached out and we have made this E46 M3 kit available.

    Myles TIG welded these reinforcements to the 4 locations we wanted to strengthen, then stitch welded a few spots that the factory skip weld. This is part of why we bead blasted the whole subframe - it makes for cleaner welds, shows any flaws hidden under the factory paint, etc.


    After we got the rear subframe back from powder coating it looks beautiful. We rounded up a set of Powerflex "race polyurethane bushings for the subframe (4) and differential mounts (3). Some might find our choice of poly unusual, as there are Delrin and even aluminum options for all of these locations. Well having done all of that before we knew that this option would give us the least NOISE while controlling any unwanted movement. Aluminum bushings in particular make for a lot of loud crashing and banging, which can be unsettling in an 8-24 hour race, over and over.

    Brad pressed in the bushings into the housing (above left), which had already been removed before blasting. The diff housing was then tackled with some special tools we have just for these 3 locations.

    Two of the bushings for the M3 housing are in "ears" that extend out from the aluminum rear cover. These are relatively easy to get to. The front bushing is near the pinion flange and goes in the right side - it is pressed into the subframe assembly, and is a little trickier to get to. The diff housing then bolts through this bushing to mount the front.

    With all of the bushings pressed into the subframe and diff housing it was time to joint them together, shown above and below.

    This selection of "harder" durometer polyurethane bushings should provide the control needed between these two pieces, which normally rock and roll around on very soft OEM rubber bushings. This movement, of both the diff to the subframe and the subframe to the chassis, is what causes so much flexing of the sheet metal tub - which leads to cracks that have to be repaired. We will fix this by adding reinforcements to our chassis in a later update, of course.


    One of my goals for this project it to develop new products - and one area we have been pushing into lately is seat brackets. I moved us into this arena reluctantly, but since many of the chassis-specific seat base bracket offerings out there are so terrible (too tall, too flexible, not safely built) that I felt we were doing the community a disservice by staying out of this area.

    I wrote this forum thread last year explaining the "what, why and how" of our unique form of seat brackets. We have made these for 5 different chassis now and will be offering the E46 versions soon after I post this. We make these to bolt to the chassis, have mounting holes for lap and anti-sub belt anchors, and leave a swatch of metal that the end user drills and bolts their side brackets (fixed) or sliders to. All of these designs are minimally tall and have reinforcing ribs underneath, and we make them 100% in-house with CNC cut parts, TIG welding them on production fixtures.

    We normally take manual measurements of each chassis' four factory mounting holes, but this time we were willing to try some new technology - 3D scanning. A helpful sales tech came by to demo his scanning products and used this chassis for the test. What it gave us was a point cloud that we could then translate into a CAD design. Don't know if it really saved much time, but it was cool watching this tool being used.

    Myles turned that into a working prototype, which he CNC cut and we tested in the car (above left). The E46 chassis is pretty narrow and what he realized pretty quickly when this prototype was placed in the car is - we usually offset a racing seat pretty far towards the tunnel. The factory steering wheel isn't even centered on the factory BMW seat. So I worked with him on version 2, which has this offset built in, that he cut, tested, then welded in the reinforcing ribs for (above right).

    Tim worked on the sliders and side brackets, which were tested on the seat, then the holes were transferred to the bracket (above right) and the sliders + brackets were bolted into the car. So we have one seat mounted. As soon as we make the passenger side version (they are sometimes mirror images of the driver's side, sometimes now) we will release this as a bracket to sell.


    For the past several months our E46 had been up on jack stands and stuck in this cramped work bay. This was because we had removed all of the OEM suspension and had only mocked up up one front corner with a strut/spring/top mount. This let us work on the big brake kit there but we needed to get this car down on the ground and mount up some wheels and tires to move forward in the build. This meant we needed a set of coilover shocks.

    We had put out the ask for a little while, and MCS came through in a big way. Getting triple adjustable MCS dampers for this car was the culmination of a lot of hard work, a long record of MCS sales and race wins using their parts, and a little begging.

    Normally we will stretch our budget to go for internal doubles (TT2) or remote double (RR2) adjustables on our shop owned cars - which tend to be focused on Time Trial and autocross competitions. My S550 Mustang has RR2s, as does my wife's Optima entry, an LS powered 86. But MCS felt that the triple adjustables were worth it on this endurance road race car.

    The triple adjustables give us low speed Rebound, low speed Compression and high speed Compression adjustments. This is especially helpful on a Wheel to Wheel race car where "defending your line" means using a bit more curbing than you would in a TT or HPDE car. The rear shocks are setup to run as a coilover, which we normally don't do for various reasons on the E46 or especially E36 chassis BMWs.

    We got to work quickly installing these onto our E46. The front was a simple bolt-on affair with springs we had on hand. We needed that end on to be able to spec the front wheels - which we try to keep as far inboard and as close to the strut as possible.

    continued below

    Leave a comment:

  • Fair!
    Project update for March 23rd, 2020: It has been four months since my last post here and a lot has happened - with this project and "the world" in general. As I write this we're in the middle of a global pandemic, but updating this build thread will help clear my mind, and maybe give some of you something to read while stuck at home - hopefully avoiding this virus.

    This update is going to be about exactly ONE car this time: our #TeamVorshlag endurance road race car. We're trying to focus on this race car as much as possible, with the resources and time allotted to it. We have installed a roll cage, the LS V8, built the E46 M3 rear subframe, and added some carbon bodywork.

    There is a lot of progress considering we work on this one night per week with a volunteer crew. This has gone from a ratty $100 chassis to a proper race car build, with more than a few pro level drivers asking about co-drives. MCS triple adjustable dampers, 18x11" wheels, carbon bodywork, proper aero, and top level safety gear. This E46 is getting pretty serious.

    So let's jump right into this build, already in progress!


    Last time I showed our cage kit in pictures from the builder (Hanksville Hot Rods), who put it together in an E46 chassis halfway across the country. We received the kit a month after my last post, in December 2019, and we immediately got to work. This included cataloging and weighing the parts, then starting to fit everything into our chassis.

    As I write this in March we have everything installed except the door bars, and we've made a few changes and tubing additions. We're saving the door bars for last, as it is a LOT easier to wire the chassis and work in the cabin with those not in the way.

    This kit doesn't come with instructions, other than the assembly pictures that Hank sent us as he was building it. But he does mark every coped and fitted joint goes, and every tube is labeled to what it is and where it goes, as are the eight mounting plates. This makes installation pretty obvious.

    One of the main aspects that I love about Hank's design - and one that some #CageSnobs and armchair engineers might snipe about later - is where he mounts the main hoop. Instead of sticking it on the floor in front of the rear seat/fuel tank area, he puts it further back and up on a slight shelf, shown above. This places the main hoop about 6" further back than some other kits - and this is crucial.

    You have to cut a little flap of sheet metal out of the way, but the lateral structural part of the unibody here is much stronger than the thin gauge sheet metal of the floor. Also, moving it rearward makes it easier to fit drivers of varying heights, and one of our guys is 6'4", Tim Buck, and we have two 6'3" drivers as well. We need all of that room rearward for the seat to slide back, as well as room for the harness bar and shoulder straps.

    We started fitting this as soon as the rest of the interior was prepped, and the main hoop was set on the mounting plates shown in the previous steps. We tacked the plates to the cleaned and prepped floor and then the main hoop went in - it was almost touching the B-pillar, which is perfect.

    We tried to hold the main hoop then fit the forward A-pillar bars and upper windshield bar but it wasn't lining up. Turns out we need to get the angle of the main hoop set with the rear down bars, so those landing pads were burned in and those rear bars set in place.

    The forward A-pillar bars land on this bent landing pad shown above. Once we had the rear fitted it was obvious where this needed to go. Our chassis needed a little persuasion on one side and the paint stripped from both to line them up. I trimmed the corners a bit to fit a bump in the floor on the right side, then Tim cleaned the floors for welding.

    Once we had the floor adjusted to fit those front landing pads, the rest of the cage alignment got better. At this point it is mid January and we had a good bit of progress on the cage. Only about 8 hours invested at this point.

    The upper windshield bar had two bends and kicked "upwards", and was looking like it might interfere with the windshield glass. The curved "dash bar" also looked a bit challenging for use with an actual dash pad - which we wanted to use. We re-cut the cope the upper windshield bar and trimmed/lowered the A-pillar bars a fraction of an inch, and it fits below the windshield glass.

    With the main portions of the caged test fit and tack welded, the harness bar and diagonal were fitted. Then as every section was tweaked and we were happy with the fit, the tack welds were cut. These tubes then were cleaned up at each end and landing pad - the outer surface was sanded clean - then they could be TIG welded inside the car.


    In some cases the whole cage can be MIG welded - and we did MIG the landing plates to the floor pan and chassis. There is usually sealer or paint on the back side that makes TIG welding these plates difficult. Using the MIG we can burn through without issue.

    The rest of the joints and junctions were all TIG welded. Why? It comes down to heat - with the adjustable amperage control thru a foot pedal or thumb control, you can control the heat of the weld puddle, which helps control the Heat Affected Zone of the weld. If you get the weld too hot it can cause embrittlement, which is one of the reasons Chromoly tubing is no longer a good choice for road race cages and why we see low carbon 10XX series seamless tubing there (even drag racers have moved to Docal).

    On this cage Myles has done most of the TIG work, and he's been careful to keep the HAZ uniform and looking good.

    There are a lot of hours that went into prep work - you have to clean the welded area much better for TIG than MIG welding - to get the welds to look pretty.


    So the dash bar was changed from how Hank likes to make it. His tube is probably stronger, and you can stitch weld it into the cowl structure at the base of the windshield.

    The above left pic is how Hank sends the dash bar. It can be stitched to the cowl and is pretty far out of the way of everything else. But it would murder the leading edge of our OEM dash, which I demanded that we use. So we did some work (below) and made this straight dash bar instead. I will explain.

    We have a number of spare E46 dash assemblies, including this grey one and the tan one that came in this car. We took the tan dash (above right) and removed the bits we wouldn't use. It weighed in the 12-15 pound range (we will weigh it again later) but after we got a nearly finished weight under 2200 pounds (see bottom of this update) we figured we could afford a dozen pounds for a full dash skin.

    The dash mounts to a complicated structure that has a lateral bar that bolts to the A-pillar/hinge areas (see above right) and has a lot of clips and stand-offs that tie into the dash pad itself. Of course we removed the radio, computers, HVAC and other heavy bits - we just want the shell. But the easier way to mount the skin was to tie into the base of the windshield (hence the removal of the Hanksville tube) and then to keep the stock dash bar (the rusty bits above). To be able to fit this OEM dash bar in front of the A-pillar / front down bars of the cage we had to hack away at the ends for clearance, then cut the tube in half.

    Of course we could have done this intact if we had planned on using the stock dash bar before the cage was fully welded in place, but once we clearances the ends and cut it in half it could be slipped in place. Then we welded it back together. Obviously the structure of this dash bar is compromised now, with all of these changes. Hence the second straight dash bar that we added and tied into the cage. Again, it seems like a waste of tubing, but it will be MUCH easier to fit the dash skin over this straight bar than the curved bar the comes in this kit.

    Me, Tim, and Magan (our newest crew member / future driver) worked all of this out one evening, test fitting and cutting the OEM dash bar until it fit. Then the dash was almost ready to go in (above right). We'll trim the dash pad - carefully and in progressive steps - to clear the A-pillar / front down bars, and then it can mount right to the OEM structure. Extra work but it will provide proper glare protection for the digital dash we will stick inside the stock dash "nacelle", and a dash pad really makes a race car look more professionally put together. With some of the parts we added below you might understand why that's becoming more important.


    So this is where I expect some friction. On the internet "everyone is an expert" and cage analysis is something that borders on an obsession for some keyboard warriors. I've got my own personal design theories here as well, but I understand that there's more than one way to build a safe roll cage.

    This "NASCAR" door bar design that Hank does is a bit controversial, but I totally understand why he makes it this way and agree with the compromises it entails. Look, everything on a race car is a compromise - because everything depends on everything else. Moving the main hoop rearward (a damned good idea) to the point that it lines up with the back of the B-pillar makes for a tough angle to land "outward cured" door bars like this.

    This leaves a partially unsupported "S" bend in the door bars, as shown in the mock-up pics he sent us. I'm totally OK with this. And Hank happens to be the NASA Tech Steward for two NASA regions, including Texas. I'm pretty sure he'll sign off on this cage. A NASA log book will get the car into WRL, SCCA, almost any other W2W group recognizes NASA certification.

    We ordered the driver's side with this NASCAR style bar setup instead of his optional "X"or even straight bars. Why? Moving the door bar away from the driver and damn near to the skin of the door adds ROOM for the cage to deform in a big side impact. That room allows for energy to be put into the cage instead of your ARM or LEG. Having seen driver's break legs, hips, and arms with crappy door bars I will always try to do this trick.

    To avoid the "S" curve you would have to BUTCHER the B-pillar on the E46, and likely most "DIY" cage builders using a kit like his would be over their heads and they'd make a mess of it all. We did the same thing on a 4 door EVO X (above) and had to get special permission from NASA National office to alter the B-pillar. They even made a rule change in the CCR to allow this. But that was a 125 hour cage job, which was a huge money loser. I'm not keen to repeat that time consuming work on our team car.

    To save money we ordered the passenger side with the straight door bars. Plenty strong but the difference in room to the passenger is quite a bit. And with half of our team not having any wheel to wheel experience we're going to be utilizing the right seat a good bit for driver coaching before our first endurance race. So we've decided to mimic the driver's side curved bars on the passenger side (above right) - they fit with a change to the coped ends. Will show that work next time - as the door bars will go in last.


    Last time we showed this curved bumper beam but it wasn't mount to the chassis. We've finished this piece and will show the steps below.

    Getting the beam nested inside the bumper cover was part of the trick, pushing it as far forward and as wide as the E46 M3 bumper cover allows. We have zero OEM bumper structure left - this is a crash beam, clear and simple.

    Myles spent some time under the hood and working with placement of the tubular beam. Once he was happy with the placement, he and Tim made the stand-offs that were then tack welded to the flanges we cut on the CNC table (we've started making these bumper mount flanges, after a racer saw the last build update and wanted a set).

    With the beam tacked to both ends of the stand-offs it was pulled and fully TIG welded on the fab bench. I missed getting an "action shot" of this work but Myles got this welded up, even added some triangular gussets (shown below).

    I asked Myles to look at the tubular beams we've made for two other E46 models and the bracket above is a reflection of that. He made one flat mock-up that didn't work out (above right) but when he added the bends with the box and pan brake (above left) the 18 ga steel bracket really stiffened up. Adding some dimple die holes also reduced weight while firming it up even more.

    This bracket was then welded to the bumper beam and the top edge is what the top of the bumper cover sits on. We'll add a few nutserts to the bracket and some counter sunk bolts till attach the bumper cover to the bracket.

    The fully welded bumper beam was bolted to the frame stubs and is rigid enough to jack up on, add jack stands to, etc. This allows the bumper cover to finally be supported along the front edge. We'll still add two two hooks to the beam, splitter stand offs, and some brackets on the edges for the bumper cover. Will show that next time.

    continued below
    Last edited by mylesloan; 03-31-2020, 05:45 PM.

    Leave a comment:

  • Fair!
    continued from above


    We had just pulled a 5.3L LS based iron block engine from the dead carcass of my old shop truck, a 1999 GMC Sierra 1500, #TruckNorris. This truck was smashed into while I was sitting in traffic by a 1 ton van going 60 mph. Destroyed my truck, bent the frame, shoved me into a parked truck and trailer also stopped in traffic ahead of me. Don't text and drive, kids!

    That "LM7" series 5.3L is still an LS based engine, and the "706" castings are a small-valve "cathedral port" aluminum head. This article describes the 706 heads pretty well. They are probably some of the worst performing factory aluminum LS heads out there, but we can still make them work well enough to easily exceed 305 whp - and beyond. This is part of a test...

    Erik at Horsepower-Research (HPR, where I am one of the managing partners) is helping us build this car, and will co-drive in endurance races. He disassembled these heads, then we cleaned them up in the aqueous parts washer before running them for about 15 minutes in the Ultrasonic parts cleaner. The flat stone shown above right was used to knock some of the carbon deposits off the block surface, as well as check for flatness. The heads checked out great even after 273K miles of truck use. The ports still had some carbon but the CNC work will take all of that out.

    Most of the valvetrain will not be re-used, and the now bare castings have been sent off to a head porter we use for a "single pass" CNC port program. These will be assembled with steel (not titanium) valves, for our fairly modest power goal. HPR is known for BIG displacement LS engines, but these heads will be a test for an LS engine we want to develop for more economical endurance racing use.


    The intake manifold we use for cathedral port heads - along with the camshaft - will determine where in the RPM range the engine will make the most power, and can unleash more on top with aftermarket designs like the Fast or MSD. We might cut the hood later, but we wanted to stick with a low profile "car" style LS intake to start with.

    We cannot fit the taller Truck style LS intake (above left) under the hood of an E46, but they do make good power even with a smaller 75mm throttle body limitation. The 75mm mechanical throttle body versions of the LS1 and LS6 intakes are a bit snug to the E46 hood, but we made 490 whp on a 427" LS engine (above right) that was in our Alpha E36, back in 2008 - also built by Erik Koenig.

    The other low profile cathedral port intake we can use is from the LS2. These use a 90mm DBW (Drive By Wire) throttle body, which is significantly larger than the LS1 or LS6 intakes' 75mm throttle body. The LS2 DBW throttle body setup is also much "shorter" (front to back) than the later LS6 Corvette DBW TB, and the 90mm LS2 style is very cost effective, too. We have seen a good power bump by going to ever larger throttle bodies... there is almost no limit of how big you can go. 102mm is common and we've seen our 468" LS engine pick up power at 105, 108, and even 112mm throttle bodies.

    I did a bit of research on the Dorman brand of replacement LS intake manifolds and this 615-901 "LS2" model with a 90mm TB opening was a real bargain. I hadn't seen much online about this new Nylon intake offering from Dorman so I bought one and we took a closer look. It arrived and looked pretty much just like an LS2 intake. This Dorman intake is only $215.99, and its brand new. A lot of the used LS2 intakes we see for sale have cracked bosses because they are all 10-14 years old. Plastic ages...

    The Dorman 615-901 intake's casting looked pretty good except for two locations: There was a weird "protrusion" in one corner of the intake port near the cylinder head (above left), plus the throttle body opening had a lot of weird casting flaws and gaps (above right).

    I had engine builder Erik take a look and he said he could fix the flaw in each of the 8 intake ports, then we could port then epoxy the small gaps at the throttle body area. At one of our Team work nights he used a long reach porting carbide cutter and smoothed out the protrusion.

    We think this was a flaw in the internal casting dies - something shifted, and nobody bothered to fix it. Same goes for the throttle body section of the casting, where it meets the main plenum portion of the manifold. Just not a smooth transition there, lots of casting flash that had to be removed.

    The part is even made in the USA, which is weird. Maybe Dorman will have this worked out at some point - just know this LS2 unit might need some work. He was done porting the intake ports and throttle body opening in about 90 minutes, and I cleaned the intake in the parts washer at HPR later that week.


    We wanted to start with an aluminum LS block, as these are 80+ pounds lighter than the cheaper iron LS blocks. We could have sourced an aluminum 5.3L truck engine, which has a 3.780" bore. This is as small as any LS engine (4.8L is the same), and restricts the size of the intake and exhaust valves. So we looked for one of the 3.900" bore LS engines (LS1, LS6), which I happened to have. The 4.000" bore LS2 or 4.065" LS3 blocks would be even better, but those are more costly and I had a clean LS6 block I donated to the cause.

    The block was equipped with the OEM 6-bolt main caps (they are worthless without mains!) and it was mounted to an engine stand to take those off.

    Once you get the bolts out these mains are a bit tricky to remove cleanly. Erik has this custom set of main cap pullers one of his employees made years ago and I used it to pop the mains out out of the block. Each main was stamp marked before removal, of course. The thrust bearing is on the 3rd main, as shown in the middle of the block in the above left pic. The main bolts were kept but will likely be replaced with ARP studs.

    We mounted the block to Erik's mill, which he has setup for block work. The goal was to clearance this block for a 4.00" stroke crank, up from the stock 3.622" stroke crank used in the 5.3L or the 5.7L LS6. If you want to do the math, it's easy:

    ((3.900" bore ^2) x Pi / 4) x 4.000" stroke x 8 cylinders = 382.3" or 6.3L

    This extra displacement only makes the engine more reliable at the power level we are targeting - as we can make more torque at lower RPMs with the added displacement. We do this "make it bigger" trick normally to make more total power, which it does. But on any engine, more RPMs = more problems, and on an endurance engine, we can make the same power goal at lower RPMs. We ran his crank clearance program for this LS6 block and a 4.0" stroke, which takes about 45 to 60 minutes. This is to allow the connecting rod to clear the bottom of the block's cylinder casting with the additional stroke.

    Next up the block was mounted to the surfacer, and the decks were surfaced the bare minimum to make sure they were perfectly flat and square to the bore centerline. With less than .005" removed the block cleaned up perfectly. There are more steps - line hone, bearing checks cleaning - but I will show more of the shortblock work next time. And we have a second engine, an aluminum 5.3L, that we are setting up as a back-up engine as well.

    2004 330i ZHP

    Another customer tired of dealing with lots of little issues like CELs reached out to me this month and wanted to unload this Imola Red 6-speed ZHP sedan. It is out of inspection and registration, and the AC is blowing hot, so it's pretty much unsellable in Texas.

    This is a one owner Texas car, however, and it has some tasty upgrades. A 3.64 geared limited slip diff, coilover suspension he bought from us over 10 years ago, 18x9" wheels, Michelin Pilot Sports, a Setrab oil cooler, and more.

    With 162K miles, the AC system on the fritz, and these CEL issues it isn't worth a lot of money as it sits - and I don't want to fall into another "let's just find the issue and sell it" trap, as the risks of these being easy fixes are nil. We went and drove the car, however, and it is really nice. Super clean inside and out - this was owned by a BMWCCA member who cared for this car - until it became more of a burden than a joy to drive. I brought a trailer to tow it back home, since it had no plates.

    Not really sure what we are going to do with this car - we take it to lunch on nice days and it gives me bad ideas. How about a nice daily driver with a 500 whp V8? I bought this E46 M3 rear subframe (and we have a 210mm LSD M3 diff) just in case we move forward with a swap.


    That seems to be enough for this time, but we will have much more to show on the next update. We should have some progress to show on the Team Car ...

    We have a few 210mm M3 LSDs and it is cheaper to use one of these than convert the medium case 188mm E46 non-M diff. So I donated an E46 M3 rear subframe (not the same one that I bought for the ZHP) for this E46 endurance car. This has had the bushings pressed out and bead blasted - next time we will show the reinforcements we are adding and the new bushings going in.

    We will also show the sealed spherical bushing we installed in the RTAB location, which is pretty slick. Also the cage install, electric assist steering column, and more. Lots to do!

    Until next time...

    Leave a comment:

  • Fair!
    continued from above


    I teased this last time, and I'm not going to share everything now - because this brake kit is currently untested. We could have just bolted on E46 330 brakes, which are an 1" larger in diameter from the base 325/318/328 brakes, as shown below. We've done this cheap upgrade on a number of 325/328 cars before. But this car is going to be in WRL GTO class (more on that below), with V8 power and 315mm tires... it needs MORE BRAKES.

    We started developing this swap kit last June and tested 6 different rotors and a few calipers. I bought a number of rotors, including the E46 M3 325x28mm, the ZCP competition M3 2-piece rotor which is 345x28mm (and $$$), and some other rotors. We mocked up the Powerbrake caliper on a number of these but the prices start ti get extreme if we use that caliper.

    We kept coming back to a particular Brembo 4-piston caliper, which we have a lot of experience with. This is not a radial mount Brembo like the Porsche calipers some BBKs are based on. Those Porsche calipers need to be machined and still require a somewhat expensive caliper + core to work.

    We attempted to use this with the E46 M3 rotors but the spacing for the Brembo, but with the somewhat "small" diameter 12.8" E46 M3 rotor, the spindle mount spacing just didn't work well for this caliper's mounts. And honestly we wanted a bigger rotor for endurance racing - which is where we see this kit working well, as the E46 is a popular endurance race car chassis. We actually made a bracket to where this Brembo to this M3 rotor but the caliper had to scoot "up" enough that part of the pad sat above the rotor. That's going to make the pads wear poorly so we abandoned this M3 rotor. Shame.

    Next we tested a number of larger non-BMW rotors with the same 5x120mm bolt patterns, including this 1-piece 13.6" (345mm) above left and a 1-piece 14.0" (355mm) rotor above right. Even though we would be going to an 18" diameter wheel for our car, we knew many endurance E46 racers wanted to stick with 17" wheels, so we used our 17x10" Forgestar as the "go / no go" gauge for our brake fitment testing. We even tried a 14.5" rotor but it was too tight for safe use inside this 17" wheel.

    The best fit for the 4 piston Brembo caliper on the E46 non-M spindle was on the 14.0" diameter rotor (355mm x 32mm), which is a monster. It had the right bolt pattern but we had to slightly re-machine the opening to fit over the BMW hub. Myles used our CNC lathe to make this cut and it worked perfectly. This rotor weighed 24.0 pounds before we machined the hub and chamfer. Very cost effective.

    I am not showing our E46 mounting bracket just yet - we made prototype brackets that bolt-on without mods, but they aren't production quality looking yet. Once we get some laps on this brake setup, and if they work as well as they should, we will sell this as a kit (rotor, caliper, bracket and hose). Gives us BIG brakes, affordable calipers and rotors, with a massive pad selection. Fits within some 17" and all 18" wheels. Stay tuned for more.


    I teased this last time as the widebody kit had just arrived but we hadn't mocked it up well yet. We needed the bumper cover, left door, a wheel and suspension, and the correct left fender mounted to test flares these completely. All of those other other steps have been completed so now we could finally test fit these bits properly at all 4 corners.

    We were excited to try a widebody kit that we could buy for so little. This looked good for both clearance and minimal drag. The aero of a fender or flare matters, especially when you are bombing down the back straight at COTA going 150+ mph. We found out later that the images used by Duraflex on their website are only 3D renderings, and even those are from a competitor.

    We got the kit that we ordered (we are a dealer) and the fit and finish was pretty good - we have used a number of items from this brand and quality can be a bit "all over the place", but this was one of the better fitting setups. We spent several weeks rounding up a LF fender, mounting the nose and hood, getting the driver's door on, and mounting the suspension/wheel/tire/brakes - before we could mock these up properly.

    These are made to work with the M3 nose and M3 lower skirts, so we had a gap at the bottom where the skirt was supposed to be. But we have some M3 skirts laying around, that won't be a big issue. The fronts and rears both fit surprisingly well. The rear had plenty of tire clearance...

    ...but the front will only clear a 275mm tire. That's the problem with looking at the drift or stance communities for flare options - they never run a lot of actual tire WIDTH, just going for the stance or a tire that makes lots of smoke.


    These flares won't fit over our 18x11" wheels up front, but for a racer or team running a 275mm tire on a 10" wheel, this should be ideal. Interested? We'd sell this whole kit at a loss for $400 shipped - call us at the shop if you want this set. Only mocked up, never drilled or bolted on.


    Many of you know that Vorshlag is known for making higher end roll cages in road race cars. But if you have read this post titled "we make roll cages" you might realize that our cages cost a bit of money. Because they take a long time to plan, prep, bend, notch, fit, and weld. 60-75 hours is normal for a car like this.

    Spending 75 hours building a cage from scratch - after hours and in our free time - could takes several months to complete. We tried to shortcut this time by ordering a "cage kit" from a reputable shop known for perfect fitting BMW cages. These are pictures of the kit built for our car, remotely, using another E46 coupe chassis to build within.

    Back in May the team voted on this option, and then paid for this E46 kit from Hanksville Hot rods. They build their kits inside the same chassis as you ordered - but it took longer than expected to round up an E46 coupe to use. And longer still to complete the kit. Stuff happens.

    This was an experiment to see how many hours we could save by ordering a kit and just doing the final welding here. It likely will save a 40+ hours of fab time, once it is complete and in the car, but our 6 month wait to get the kit built did nothing beneficial for our build's timeline. We had hoped to be on track in the Fall of 2019 but we are now pushing into Spring of 2020. We will show more of this kit being installed into our chassis next time, then many things staged behind this will follow.


    After the Duraflex kit proved to be too small up front for us we immediately started looking for an option that could clear our 18x11" wheel and 315/30/18 tire we will be using. Since 2017 "Clinched" has been making some stancey widebody kits and flares. They make a series of "universal" flares from thermo-plastic, which are formed on a vacuum table - a technique which we have used in the past.

    We had started to see these show up on legit road race and autocross cars with BIG wheels. A buddy had purchased a set of their "Euro" style flares with 100mm (4") widths. They worked to clear a 335mm tire on his Subaru track car (below left) and the same units on this CTS-V road race car looked pretty good. This style is made to be trimmed to fit, then bolted on.

    We borrowed this 100mm Euro flare and mocked it up on both ends of our E46 coupe. They have more room than the front Duraflex widebody kit.

    This won't be as clean of an install as the E46 specific widebody kit, but it will give us full coverage on the protruding part of each tire, and we can vent behind each tire by trimming the flares short on the back side. We became a Clinched dealer a month ago and ordered a set of flares this week for use on this car. We will show that installation work in a future post.


    We have been staying quiet about the engine, but it's Vorshlag - what did you think we'd build? Of course an LS swap is in order for our E46! Look how good an LS V8 fits under the hood of an E46...

    An old prototype set of our stainless long tubes was rounded up, we built some mounts, have a brand new transmission which we will test (which I cannot talk about yet), have an E46 M3 rear subframe and diff to use, and more.

    Once we agreed upon the class we wanted to run (GTO) then the engine we would use became obvious - an LS V8 engine.

    Even running the highest class in WRL (GTO) we are still limited to a fairly tame 9 pound per whp. And unlike NASA ST/TT classes, they calculate with no driver (but full of fuel). We need to know what the car will weigh then figure out how much power we can make...

    We haven't done a W2W prepped E46 LS build yet, but we did build a caged E36 with a 427" LS engine and T56 Magnum before. This was our "Alpha" E36 LS build, which we raced from 2006 to 2009. Fully caged, with a fire system, aluminum LS, full exhaust, oil cooler, big radiator, Accusump, heavy 17x11" CCWs, all of the factory glass except the doors (which were gutted), and a single racing seat it tipped the scales at 2508 pounds, without fuel. The E46 chassis is a little bit heavier, plus it will have full aero + driver cooling system - so lets call it 2750 pounds full of fuel and race ready.

    2750 lbs / 9.0 = 305 whp

    This peak number of just over 300 makes a BMW M54 based engine out of the question. And yes, we could have built a higher strung S54 E46 M3 engine for this car, those aren't exactly inexpensive or known for massive reliability in endurance racing. Costs for an LS are much lower for us, and we are known for LS powered BMWs, which pushed us to an aluminum LS. We could make this with the smallest displacement 4.8L truck engine, or easily with a stock 5.3L. But we are going to "overshoot" our power goals, then dial it back with a using a custom "flat tune" by way of a factory Drive By Wire (DBW) throttle body. You could do the same thing with a physical restrictor in front of the throttle body, too.

    continued below

    Leave a comment:

  • Fair!
    Project update for November 29th, 2019: Another long gap since I updated this thread, but we have been pretty busy working on several E46 cars in the shop.

    This time we have three E46 chassis we are going to touch on. The first is my black 2003 325Ci that has been around for two years but was recently sold. The next is our Team Endurance build, the E46 coupe shown above. There has been a lot going on behind the scenes since my July update - as well as a significant delay that was out of our control.

    Lastly we will talk about this gorgeous Imola red ZHP 6-spd 330 sedan above, which I bought from a customer recently. It has some little issues and CELs that won't be easy to fix. Our plans with this car have been effected by how hard the black 325 was to restore and sell. So let's catch up!

    2003 BMW 325Ci SOLD

    I bought this clean E46 coupe automatic from a customer in May 2017 - a car we had worked on for him in the past, but when we moved our shop he started going elsewhere for repairs.

    After a few "random" repair shops milked a lot of repair jobs from him over a few years, it got too expensive to drive and for him to maintain in a perfectly functional, super clean form. This is the fate of many E46 models in 2019 - they have aged a bit now, can become plagued with electrical and sensor issues, inevitably they get some problem that throws a CEL (Check Engine Light), and other lights on the dash start to freak people out.

    This car was handed down to one of his college age kids, which did the 325 no favors. It got a bent wheel and delayed maintenance until it just stopped running at one point. I bought it for a good price but if you read the extensive repairs we have detailed here you know I had a lot of time and money in this car. All of the suspension, lots of underhood repairs, the tires and brakes, interior updates, swapped the transmission, etc. It had a CEL that we kept chasing, and I finally threw my hands up.

    This car was never going to be a good candidate for a race car build, as it was a 325 with a slush box. The AC worked but with a CEL it was virtually unsellable. We cleaned it up extremely well, posted some really nice pics and details on Craigsligt then FB Marketplace... all we got was tire kickers and trash pickers. $1000 and $1500 offers, sight unseen - we never even had one person show up to look at and drive it. Sad.

    The car was super clean, and drives great. One of my employees needed a daily so I sold it to him cheap, and lost a bundle on this. But my wife drove it for about a year, so I have to just look at that as "the cost of driving a car". Moral of the story here is: don't buy that "cheap E46" you see for sale, thinking you can fix it up and flip it. This was a 100% Texas car (rust free), straight, super clean inside and out, had D-Force 17x8.5" wheels plus great tires... but with 151K miles and a CEL it was hard to sell. It was sold for half what I had in it. Lesson learned.


    Of course this car's HVAC blower motor quit working almost immediately after he bought it, so we fixed that on my dime. Blower motor & blower resister are both a "high failure item". There are detailed links below on both tasks:Since I was already selling the car at a loss, we tried the less expensive part that potentially had more labor hours first - the resistor.

    You can access this behind the glove box, and this trick saved some Brad a lot of time on this task. After about 90 minutes the resistor was replaced and the fan immediately started to work, and has worked ever since.


    This should be an easy one, but I re-learned a lesson here. The left front fender was smashed when we got this rolling chassis for a song - not a big deal, as I keep a couple of pairs of front E46 steel fenders in stock to use for metal flare jobs on E36 chassis (from before - when there were not good flare options). But it had been a number of years since I had bought these fenders...

    Again, we haven't done a steel E36 flare job like this in years - because there are so many good flares and widebody options for the E36 now. The E46 is no different, as I will show below. But I had forgotten that we utilized E46 non-M SEDAN front fenders for our E36 flare jobs. It came down to the recessed trim section in the sedan fenders was further back and "out of the flare" section. That made the welded steel flare jobs on E36 cars easier. We would cut out the fender flare portion of these E46 fenders then graft them to the E36 (see above right). It was a bunch of work but could turn out nice with a little bodywork and paint.

    So when the smashed coupe fender was removed, I grabbed one of these SEDAN fenders, not remembering it wasn't a COUPE front fender. It was on the car for a couple of months - because with the front nose and left side door off it wasn't obvious it was the wrong one. If you look at this fender installed, above right, you will notice the body lines from the A-pillar don't match up - that's all that was visible... So when we test fit the Extreme Dimensions flares (shown further below) it "didn't fit".

    Again - a weird mistake, and it would have been immediately evident if the door was installed. Luckily replacement coupe fenders are still cheap for these cars and I found some for $58 shipped. I used to pay closer to $33 for these import fenders from a local Certifit store, but that's a 3 hour round trip in traffic to save maybe $20. This is one of the few things eBay is good for - cheap used parts or import body parts. Probably won't be the last fender we will need on an endurance car, hehe.


    We aren't 100% done with this step but I will show some progress. The "M3 style" front bumper cover is an import unit designed for use on a Non-M coupe chassis. This is often used by Spec E46 users, and we will utilize this item for the better grill openings and flatter bottom - which makes adding a splitter easier.

    At this point we have the bumper cover mocked up - we needed that for the flare fitment tests. The factory plastic brackets at the tub are holding the receiving "cups" on the bumper cover, with the weight held up by a bucket for now. The cover needs a bumper beam to mount to, with brackets to hold it in place. We plan to have a rolled radiator that is feeding the radiator from the lower grill opening only. to make room for that a tubular bumper beam is a trick we often use to make more room. Here's an example of what we have planned, which we built this year for my wife's LS swapped 86...


    We almost always start with our tubing roller (below left), install the appropriate dies, and then pick a piece of 1.50 x .095" wall, 1.75" x .095" wall or 1.75 x .120" wall seamless DOM tubing. We cut this to length and then bend the main curve to match the bumper cover.

    On this car we were using a carbon fiber aftermarket nose, which had both a curve and needed two bends to kick in for the portions outside of the radiator. Some folks will stop their tubular bash bar at the frame rails, like most OEM beams do. We have seen car-to-car contact rip bumper covers off, destroy headlights, and more. With our full width bumper beams on other cars we have seen our customers "come out on top" of any contact.

    Above left you can see how closely this tubular bumper beam matches the shape of the nose we are using - again, necessitating a couple of bends to kick in outside of the frame rails and under the headlights. This FULL WIDTH beam is much stronger and protective than the "half bumpers" we see some build. The mounting plates are cut on our CNC plasma table then the bar is mocked up underneath the bumper cover to figure out the lengths for the tubing mounts. These are fish mouthed and added to the mounting plates and beam. It is all tacked up on the car but finish TIG welded on the fab bench, above right.

    These pictures above show the rolled radiator - its also only fed from the lower grill opening, and mounted way forward and down. This makes venting the hood much more effective, and we will do the same thing on our E46. The upper and lower radiator mounts will be custom made, of course. We may or may not make a duct box to the hood opening behind the radiator, but we will definitely make the lower grill opening ducted to the front side of the radiator and oil cooler.

    This is as far as we've gotten. On our next weekly work night we should have this tubular beam welded to the mounting plates at the frame stubs, visible behind the bumper in the pic above. Then we will add twin tow hooks to the font, some simple brackets from the tube to the bumper cover, spec the radiator, and build brackets for the radiator and oil cooler. Much more on this task next time.


    We bought this car on very worn OEM struts, springs and "mushroomed" top mounts. After some initial work on one of our 2-post lifts this car was moved to a back corner of the shop for the next phase of work, and the OEM struts were tossed. They were total junk. We needed wheels on the car to test fit the fender flares and for our design work on the Brembo BBK, but the OEM stuff was so long that the ride heights would be totally wack.

    Luckily we had an extra Ohlins E46 coilover strut so we found a coilover spring, added a Vorshlag camber plate, and mounted that to the left front. This is not likely our final suspension but close enough for mock-up testing.

    One small downside to inverted struts is the spring and body lengths make it harder to fit "the spring above the tire", which limits how far inboard the wheel can fit. Not an issue with most wheel setups on these cars but "We're going to eleven". We need ALL of that room and more. We mounted one of my E46 17x10" Forgestar wheels and 10.2" wide Hoosiers for the next steps.


    In my last post I showed how we got the doors down to 29.0 pounds with some serious cutting, gutting, and removal of the window glass and associated mechanisms. We used a variety of cutting tools to get this structure out - including the plasma cutter and some cut off wheels in a pneumatic die grinder. Both methods are loud, noisy, and messy. Plasma cutter is probably the worst way to do this work, as it leaves a super rough edge that we then had to grind or cut away.

    We foolishly forgot to weigh the full weight doors with glass so I don't have a good starting point to reference - but this 29.0 pound weight still seemed heavy for a gutted door, to me. Something didn't "feel" right about that weight. A buddy of mine (Andy) owns Clownshoe Motorsports and said his doors were lighter, so I stopped by their shop one Saturday.

    I can't show many of the endurance racing secrets he shared with me that day, but we did measure some various tires, and noted the technique he uses to gut doors. They leave more of the upper structure but remove ALL of the lower structure, and much of the door striker bits. So we took our 29.0 pound doors and went to town on our next work night.

    Tim and Jason got to work with the Saws-all and it proved to be a more efficient, less messy tool for cutting the door structures. Leaves a much cleaner edge, too. We cut off the ugly edge left by the plasma cutter and then started to work on the metal below the latch plate.

    I then used some extreme care with the cut off wheel and took the upper "crash structure" out at the top of the door, on the inside. The slotted, 3D shape shown in the picture above left. We took this out of the passenger door, and it is heavy. All told we found another 2.1 pounds, which isn't a lot. We had already taken the main crash beam, glass, and regulator out of the door. We were starting to hit a big "diminishing return" type of task.

    Tim suggested we KEEP the upper structure on the driver's door (shown with a red box around it, above left). He crews for two different pro level road race teams that have driver changes, and he has noticed that they tend to lean on the upper part of the door during stops. So we left that in the left door, and it is only 1.1 pounds heavier at 28.0 lbs (above left). This door was weighed after cutting some of the inner structure out and with the window + regulator removed, but the diagonal "crash beam" in place at 34.7 pounds (above right).

    I made sure we weighed the full weight door (above right) on our 2015 Mustang road race project, which is going on a SERIOUS diet and getting an LS swap. 84.2 pounds for a door is extreme, but keep that in mind when you are gutting your door. We might find another pound in these BMW doors, but we have kept structure at the hinges, striker latch, side mirror mount and along the top of the driver's door. Any additional weight removed is going to make the remaining door compromised... I think we are there.

    continued below

    Leave a comment:

  • Fair!
    Project update for July 29th, 2019: Its been more than 3 months since my last post here - 2 months of that was due to an outage with our forum. A server change forced an update to vBulletn, which forced a server upgrade and move, then we had weeks of DNS name change server issues. Finally, in late July we got our forum back up and I'm catching up on project posts. We have had many of our weekly employee team volunteer work nights on the Vorshlag Team endurance E46 build, so I will catch us up to current time in this post.


    We already removed all of the carpets, dash, door panels and other useless interior bits in the first week of work back in April 2019.

    What we were left with inside was a LOT of floor pan sheet metal covered in this adhesive sound deadening material, which I will refer to henceforth as "tar paper". Its really more complex than that, but tar paper is easier to write. We would fight getting this heavy, sticky, brittle crap out of the BMW for weeks, employing a number of removal techniques. Some here have even called it the Tar Paper Wars. One technique worked better than others...


    We did a cage job back in early 2018 on this EVO X, which had a welded 4-point roll bar we had to cut out and got a proper 6 point roll cage installed in it's place. This car still had all of the tar paper installed, which we had to remove since the entire interior and cage would later be painted grey.

    The method we used to remove this tar paper was suggested by one of our fab guys at the time, Aaron, who had used it successfully on Japanese cars before. The idea is the dry ice gets the adhesive holding the tar paper to the sheet metal so cold that the adhesive breaks loose, and then the tar paper comes off in whole sheets! I wanted to see this witchcraft in person, so we gave it a go on the EVO.

    With a 5 gallon bucket filled with crushed dry ice, isopropyl alcohol was added to make a chunky slurry that looked like a witches caldron. This slurry was carefully poured onto the top of the tar paper (the flat portions), then was allowed to sit and chill a bit, then light percussion with a hammer or scraper was used...

    It was like magic. This stuff just popped out in whole sheets! I never would have believed it, but damn, the results were real. In this EVO. This one time...


    We had high hopes and bought two 8 pound blocks of dry ice and a butt load of isopropyl alcohol to try this again on our E46 BMW's floors.

    At first we tried a twist - putting the dry ice + alcohol slurry into a black trash bag, that could let us re-use the stuff in several sections, as well as the vertical paper applied at the front firewall, transmission tunnel, and back seat shelf around the fuel tank.

    Well we gave up quickly on the trash bag, as it did not work at all. We went to straight dry ice + alcohol applied directly to the tar paper, as we did on the EVO. Problem was it was not working well on this car. Not at all.

    We tried this method again another work night, with two more blocks of ice and more alcohol. And more "percussive" persuasion. After many hours over two work nights, $100 worth of dry ice and alcohol, we barely had the passenger and driver seat flat floor sections done, and it looks like a 12 year old's patchy beard. This just did not work on this BMW, maybe due to more advanced age or possibly different tar/adhesive materials the Germans used? I give this a solid FAIL rating.

    I can NOT recommend this method to be used on a BMW. Not to mention that the alcohol poured out of the many plugged drain holes in the floor and trashed my new polished & coated concrete floors. I was less than happy about this - the alcohol/dry ice method is now banned in my shop.


    We were still fighting this battle weeks later, and on the 3rd work night attempt to remove the tar paper, I insisted on trying my old proven method that we have used on dozens of BMWs in the past - a heat gun + scraper.

    This worked so much better on this car. With heat applied to a small section of tar paper for a number of seconds, a 1.5" wide putty knife was used as a scraper, and this stuff peeled right off. Not in entire sheets like on the EVO, but in manageable chunks and in a timely manner.

    The work went much faster than the dry ice, and no hammering was involved, just gentle scraping. It was like peeling fondant frosting off a wedding cake... came off in long chunks, after the heat nuked the adhesive.

    The video above shows this heat technique used on some vertical sections of the transmission tunnel - which would be nearly impossible to do with dry ice, even if it even worked. Like all methods, this still leaves an adhesive residue behind, which we cleaned up on other work nights.

    Tim tried a number of adhesive removers, from Acetone, to Goof Off Pro Strength, Brake Parts Cleaner, and finally Mineral Spirits/Paint Thinner. The Goof Off worked well enough, but its $15/gallon. The cheaper $7/gallon Mineral Spirits / Paint Thinner worked the best - just apply liberally to a blue shop paper towel, wipe it onto the adhesive, use some elbow grease, and the brown stuff comes off. Sometimes it took some work with a red ScotchBrite pad soaked in the same stuff as well.

    I wouldn't call this adhesive removal step "easy" by any stretch of the imagination - its not a "spray on / wipe off" kind of effort. You gotta get in there, use some pressure, and a lot of heavy duty paper towels and a little ScotchBrite to get it off. Just takes time.

    And sure, we could have used some power tools and abrasive discs or wire wheels, but that would have made a giant mess and we would have to prime the floors to prevent them from rusting before the interior is painted (after the cage is installed). I have heard from others that blasting or sanding this stuff only turns it into a fine mist of tar, which re-applies itself to the floorpan and other areas. As well as all over you and your shop. This heated peel + paint thinner method keeps the stock paint/primer clean and intact on the inside. We will just remove the paint near the "mounting feet" of the roll cage.


    During some of the April and May work nights, while some of the crew was working on Tar Paper Removal, the rest of us worked on removing dead weight from the chassis. We would much rather overshoot our final weight goals on the light side and ballast up, than have to go back in chasing weight later, after the cage is installed. We also have 5-7 people on any given work night and we cannot all be working on the same area.

    Pulling the doors off allowed two of us to work while 3+ people were inside the car peeling tar paper and cutting/cleaning. One of the heaviest single assemblies on a BMW are the doors. These hold the side glass, an electric power window motor + tracks, and high strength steel side impact "crash beams". It is also one of the easiest places to lose weight on a road race car that is getting a roll cage.

    After removing the side glass, Evan used the plasma cutter to remove the bulk of the steel inner structure. Then I used the cut off wheel on a die grinder to trim out the hard to reach bits, as well as carefully cut out the side impact structure. This structure is tack welded into places we cannot reach, so it was sliced off at the ends, carefully avoiding damage to the outer door skin. Then the adhesive strip along the middle of the door was sliced with a putty knife and the crash structure peeled away.

    I left the front structure in place for the side mirror mounts, and some of the inner structure around the perimeter (to give the door some structure) as well as near the door latch and hinge mounts. This will allow us to still open and close the doors. The final weight was still 29.0 pounds per side, which makes the 8 pound carbon doors on our widebody E46 look that much more attractive. I didn't get a before weight (doh!) on a stock E46 coupe door, but I will make a point to before the next update.

    The front and rear glass were removed by a local windshield guy for $50 - he came by one weekend and used some specialized tooling to get these out cleanly. We can re-use the double thick safety glass front windshield (28.2 pounds) but we will replace the 18.9 pound tempered rear glass with Lexan.

    There are two "cavities" at the back of the engine bay, made with some sheet metal structures, that seal two the underside of the hood of a BMW E46. These are made to house the brake booster + master cylinder + main power circuits/relays on one side and the ABS system (or sometimes a battery on diesels) on the other side. The bits inside can be switched left to right for different markets, depending on which side the steering wheel is on.

    Well we plan on re-wiring the whole car, and the ABS pump and computer will not be in the OEM locations, so we can get rid of the sheet metal structure on both sides. A few minutes with a Saws-All took care of the bulk of the work.

    The rest was removed more carefully with a cut off wheel and even a spot weld cutter. The structure shown here on the left (driver's) side of the engine bay was more completely removed, as it makes room for the exhaust on the engine we have planned.

    You can see initial work on the "spot weld removal" above at left. The additional structure these pieces provide is negligible when you have a caged race car. Also, about 80% of the the "rear deck" structure (which the back seat uprights connect to) was removed, which was a little over 12 pound when we weighed it. Some classes don't let you remove that type of structure, but all the classes we plan to run will.


    This was a good time to stop and power wash the chassis, while it still could be rolled outside. On one of the work nights (during the middle of the "tar paper wars" above) we rolled the E46 outside and pressure washed everything.

    Under hood, inside the cabin and trunk, exterior - all the things.

    As you can see below, this is with some of the "rear seat" deck structure is removed.

    So much nicer working on a car that has the stinky interior removed, grease and other nasty "road funk" washed out.


    Something we commonly see on E30, E36 and E46 BMWs is the front strut towers - which are supposed to be flat - get worn over time to have a curved "mushroom" headed shape.

    This happens due to a somewhat thin sheet metal used to make the stamping for the strut tower plus the smaller, softer aluminum strut top mount that transfers load into the tower. If you hit enough big potholes over time, to the point of bottoming the suspension, the larger diameter strut tower will deform around the smaller strut top mount. The 3 studs from the top mount will also "splay outwards" like above. The two towers in this car were badly deformed...

    The fix is rather low tech - I like using a piece of 2x6" lumber a a 3 pound sledge hammer to flatten the upper portion back into shape. Light rapping downward with this flat edge, walking around and pressing laterally next to around the inner ring. I fixed both towers in about 45 minutes, then we could install a camber plate on that side (during suspension and wheel mockups, which I will show next time).

    This video clearly shows the technique on flattening the towers. Of course the front struts need to be out of the car to do this, and there are some tips to keep the towers from deforming again in the video.


    We have a lot more work we have done over the last 3 months of weekly work nights to cover, but this update is getting long so I am going to save that for next time.

    We have researched, ordered and fitted some big flares, which will work with a wide tire package. We also developed a custom big brake kit (which will test on this car), that fits inside 17" diameter wheels. And of course the engine and transmission have been picked. Yep, swapping in a Mazda Miata 1.6L with a super charger! #ThisIsAnotherLie

    The air filter will be mounted as shown above, if that gives you any hint to the real engine we're using. Oh and we have a low cost "home brew" cool suit cooler we will share. Should save $500 or more over buying pre-made bits.

    Until next time!

    Leave a comment:

  • Fair!
    Re: Vorshlag BMW E46 - Daily Driven Track Car Project

    Project update for April 11th, 2019: Its been about 7 months since my last post in this E46 build thread, but we have finally started a new E46 build - just not any of the ones alluded to on the end of my last post. We have started a project with literally the worst of the 5 "potential" E46 chassis that I own. This new project kicked off last night using this black 2002 330Ci automatic rolling chassis, below.

    Look at this cream puff! Who wouldn't want to make a race car from THIS?

    In this post we will show the first steps of this endurance road race build. Everyone at Vorshlag is working on this E46 after-hours, and all employees who work on and chip in for consumables and some parts will get to race in it. More of a team building exercise than a "we will conquer the world!" type of build. We will keep a sharp eye on the budget and consumables, and share what we learn along the way. We have built several customer endurance race cars before and want to apply what we have learned without any outside interference, other than the class rules. We want to run it primarily with WRL, but also NASA TREC, ChampCar, maybe SCCA Time Trials, and more.


    We have been planning a shop endurance road race car build for years. I bought this clean, running and driving silver 1999 328i Sedan in 2015 with the intention of doing a "team" endurance road race build, with employees working on it after hours. Well, they worked on it once and the plan went kaput.

    The timing just wasn't right - some of our key employees at the time were not on board at the start, and other's lost interest soon after. Only a couple of people kicked in any money or volunteered any time on it (and luckily they still work here). After a while the car just sat, so we abandoned the "team" idea for this 328 chassis and my employees got their money back.

    Eventually I spent money and Vorshlag shop time to finish this into a dual purpose street/track car, built to be sold "on spec". A customer saw it and bought it before we had completely finished it, then had us upgrade a few things like the HARD Motorsport flares, 17x10" wheels, and some other bits he saw on our red 330 that he liked.

    Turned out nice, but not exactly what we had in mind initially - which was a fully caged, dedicated race car, built to the limit of a class, that everyone at Vorshlag could grab a seat in and road race in an endurance series.

    In an ideal world I would foot the bill and just finance a "team" car that my employees could all drive, but "ideally" I would have been born a millionaire and having to "make a profit" wouldn't be a concern! The dollars and cents for a small business like mine just doesn't work out that way. We also have a backlog of customer race car builds, so I cannot take away from our finite amount of 8am-5pm shop labor time to work on "fun cars" for the employees to use - especially ones that are not new product development mules (like our shop S550 and 86, below).

    Theoretically all of my shop-financed "test mule" builds (like my two current ones) should make the company money - with new products we develop and test with them. And for the most part, every test mule shop car we have ever built (other than my white C4) has earned their keep - making the company more than they cost to build, with new parts we can make and sell. Re-selling "other people's parts" (OPP) doesn't make real margins anymore, and building race cars simply on "time + materials" is a good way to go out of business.

    I have to be very careful on these shop builds to not overspend, over-prep, or otherwise make them un-sellable when we are done with them. All of this massively restricts their class competitiveness - every single time. This isn't meant to be an excuse, just the reality of selling our shop test cars at the end of their time here. Full on, purpose built-for-one-class, gutted road race cars are VERY hard to sell.

    My white TTC C4 is a perfect example of that - built it for a class that disappeared, which had a weird set of prep rules, and it took 18 months and I lost money trying to find the right buyer. I easily flushed $30K in billable hours down the toilet on that one. Ouch.

    Again, I'm not a millionaire and cannot afford to build money-losing personal race cars, especially ones that generate ZERO new products (we don't make a damned thing for C4 Corvettes). At least this endurance build doesn't HAVE to "show a profit", since the labor is volunteer and a good chunk of the costs will be shared by 6 people here at Vorshlag.

    So how many new products can we make on yet another E46 build? Well there are actually a number of things I have have thought of Vorshlag making, using some new tools and capabilities we have now - new parts and theories to test - and we will share all of that along the way. BMW made 4 million E46 chassis over this model run, so we won't likely run out of customers for this car any time soon. These are only secondary concerns on this build, unlike our normal "test mule" cars.


    I bought this hot mess of a 330Ci chassis a few months ago, which I agreed to take it as part of a package deal with another 330Ci (Silver) I bought and a caged Z4 chassis that I sold. This black car had a clear title but had been stripped of everything of value - M54B30 engine, trans (automatic), brake calipers and rotors, front bumper cover, driver's seat, lots of brackets and doo-dads all over the car. To most people, it was worth little more than scrap metal. I reluctantly dragged it to my property and left it outside...

    Andy at Clownshoe (who sold this chassis to me) told me to not build this car into anything like a SpecE46 race car, because it would need too many parts (which he had already picked clean). I took it off his hands for about $100 extra in this multi-car swap, mostly because he wanted the space and I had extra land to store it on at the new shop, outside with the other "potentials". It was a rolling chassis with 3 flat tires, nothing more, and soon forgotten.

    It was a Texas car so it has zero rust, but there is a poorly repaired dent in the left rear quarter panel, no sunroof, and a busted side window - so the remaining interior was already trashed from the elements. The hood and LF fender were already destroyed in a weird accident, which involved gravity, a steep ramp and an immovable object. Again, I didn't care as I have TONS of leftover E46 body parts. The red hood was installed here a few months ago, which was leftover from my red TTD 330Ci (which got a carbon fiber hood). I have several sets of cheap, new E46 coupe front fenders I bought years ago for E36 steel flare jobs so I will donate one of those - and an aftermarket E46 M3 bumper cover.

    After talking about a team build with everyone at Vorshlag for a number of weeks earlier this year, we seemed to all have a better attitude about it. The time seemed right. So we looked at various donor chassis and drivetrain options: NB or NC Miata, S197 Mustang, BMW E36 or E46, SN95 or Fox Mustang, C5 Corvette. We evan found a caged RX8 chassis we could have bought. In the end, I offered up this E46 chassis to the team plus a lot of leftover E46 parts for free, which pushed this car to the front of the pack. We started a shared spread sheet, then entered a bunch of costs and numbers. Talked about it at our group lunches for a couple of weeks...

    On April 10th, 2019 we officially kicked off this build with a "demo day" on the black 330 chassis, after work. Pizza was ordered, beer was chilled, and the car was rolled into the shop for an initial weigh in. Started the night at 2045 pounds as a rolling chassis. It was previously missing: steering column, driver's seat, one door window, brake rotors and calipers, front nose, headlights, and the 72 pound sunroof cassette.

    Everyone in town this week included me, Tim (above left), Evan (above right), Jason (below), and Amy, all worked on it with supervision by Erik from HPR. We took turns working on removing the interior bits inside the cabin, inside the trunk, and some remaining parts underhood.

    We made sure to carefully remove anything we might want to keep, re-use, or resell. I weighed everything that we had not weighed in an E46 build before, especially anything that might go back into this car. The giant HVAC box is a challenge to remove - it is bolted in from the firewall side, behind a couple of plastic panels. The entire dash has to be removed to pull it out, from the cabin side. Not an easily serviced part - thanks BMW! We will replace it with a lightweight motorsports heater core + blower motor, with a metal firewall panel in place of the giant hole there.

    The dash pad took some time to extract, but it came out cleanly, as did the dash bar structure behind it. We will likely re-use part of the dash pad, with all of the HVAC ducting removed. And we may or may not use the dash bar (if we do it will be incorporated into the cage). One thing I am insisting on is a clean, professional looking car, inside and out. A complete dash, even just the shell, makes a huge difference in how the interior looks - as well as reduces glare for the driver. We all want a good looking car - no "born to lose" jankiness that rolled out of the junkyard (even if this was a $100 scrap chassis and is being built affordably).

    The interior bits and extraneous wiring FILLED the dumpster I hauled the Dumpster over next to the shop door with the tractor, to make loading the funky interior bits easy. #TractorTherapy

    Engine bay was cleared out, but there wasn't much in there to begin with. I donated an entire E46 M3 rear subframe, one of my 210mm E46 M3 differentials (LSD 3.62 geared), some leftover prototype E46 long tube headers, and a couple of Magnaflow 3" mufflers leftover from a job we didn't need them for.

    I've also got a set of 17x10" wheels from the red car, this gold set I used exactly ONCE. The buyer of the red 330 car wanted the silver wheels, and these only fit a non-M E46 with flares - so they haven't been easy to sell. We will likely use another set of HARD Motorsport flares, since we have installed those several times and know the tricks. Price is right, too.

    At the end of about 3 hours of work we had the car 376 pounds lighter, with the carpet, rear seats, passenger seat, and the chassis wiring removed. We will likely NOT use any of the old BMW wiring, but I kept the harness for spare plugs and such we might need on other builds. The 1669 pound rolling chassis still has the driver's side door glass, window motors, both doors to gut, and some rear shelf bits to remove. Lots to go back in, of course. We need to pick the drivetrain, but knowing me it will likely be a rotary, with turbos. #ThisIsaBlatentLie


    Just wanted to fire up this thread with a quick E46 project update, and I will follow up here after our work nights, especially when we finish something significant - like a cage, or brakes, or a new part we are testing. We will try to get this car up and going quickly, to get it on track for some initial testing, hopefully getting to a WRL event before the end of the year? Look for more build pics, weights, and drivetrain pics in the coming weeks. I will also post more frequently to the newly created "E46 Track Cars" Facebook page, if you are interested in these cars - join there.

    Thanks for reading,
    Last edited by Fair!; 04-11-2019, 07:53 PM.

    Leave a comment:

  • Fair!
    Re: Vorshlag BMW E46 - Daily Driven Track Car Project

    continued from above

    We had the entire front splitter powder coated in semi-gloss black. Much stronger than paint so they don't look like hammered crap after every event's worth of tire klag and bug hits on the leading edges.

    By this point I knew this car was looking very good, and I had Jon make me a "FOR SALE" graphic for the windshield. I figured I'd take it to some event soon and somebody would see it and maybe want to buy it? My intuition has been wrong before, but I figured it couldn't hurt.

    The endplates were already painted and the wing uprights and splitter were already powder coated when the rules changes were announced, so to change them now would cost not only the additional labor to re-make them but I would lose out on the powder coating and painting costs as well.

    We even had Heritage paint the raw carbon fiber wing, and with the painted aluminum endplates and black uprights the back of the car was looking just as good as the front.


    By now I knew the car was looking pretty good, and selling this would help pay for the new car I just bought and the building that was under construction...

    At this point we left the decals on the panels that weren't painted - the doors and fenders. Everything else got painted in matching Hellrot Red - the nose, hood, mirrors, sunroof panel, wing, endplates, and flares.

    I was wondering if someone would buy this as a dedicated HPDE car that they could maybe drive a little on the street (the aero is the main factor here). I knew from previous builds that keeping the A/C, roll up windows, lights/signals, and some of the interior wasn't hurting us as far as potential buyers were concerned.

    Seeing this was making me have second thoughts... the paint popped, the interior looked great, but I kept saying to myself - how does a super clean dual-purpose car help us further the business? I couldn't find a class that it fit into without major changes and compromises. I was stuck.

    The interior cleaned up nicely, as you can see. The front carpets were vacuumed, the seats spiffed up, and it all looked great.

    Painting carbon wings body color is kind of a new thing, and after seeing what it looked like on our car, it's my new thing! Tired of seeing raw carbon blister or get cloudy from UV damage? Painting the carbon cures all of that.

    After a couple of days of waxing, cleaning, polishing, and even detailing the engine bay, Brad took the time to shoot some really good pics of the car. I was thinking of where to list it for sale at this point. Bring a Trailer? eBay? HPDE Facebook groups?


    One of our customers, who had an exotic car in our shop for some custom work, saw the freshly painted and detailed 330 in the Spring of 2018. He asked how much I'd take for the car, and I threw out and number, and he said "Done".

    Of course it is never that easy, and we ended up doing a bit of custom work for him to complete the sale. On the interior he asked for new A-pillar coverings, as the originals had fallen apart and we tossed them a while ago. And with the headliner out, the interior light (above the rear view mirror) was held on with zip ties. So we made this aluminum bracket to finish that off, and keep the lights functional.

    Due to some variables out of my control, our "Daily Driven Track Car" here wasn't driven on the road after we did the custom header/exhaust. So it had no cat, until now. A Magnaflow high flow metal matrix catalyst was added.

    The buyer was no fan of the gold 17x10" wheels, so we swapped on the silver set with identical specs and R7 tires. I still have the gold 17x10" wheels for sale...

    He asked us to remove all of the decals except for the number/letter board on the doors, which we did. Then Brad waxed the rest of the panels where the decals were removed. It looked a little naked, but I have to admit it looked really clean with the all red body now...

    The owner sent a buddy down to pick up the car with a U-haul trailer, and after loading it a couple of times, then flipping it backwards, we were able to fit it onto this short trailer. I loaned them some padded Mac's Tie Downs for the wheels to secure it and off the car went. It has since been seen blasting around COTA, and last I heard - since he wanted more power - an S54 swap was underway. Sounds like fun!


    If you remember back we bought this car in 2015, and it was kind of a hood rat car. It had every window tinted with at least one layer of tint. It had a salvage title and all sorts of little problems that are associated with that, which we fixed. We put it together and tested a number of different things for this chassis, and it competed well in NASA TTD competition in 2016 and again 2017, winning regional titles both years.

    We tested three distinctly different suspensions (PSS9, PSS9 with custom springs, MCS RR2 with real springs), but kept the 17x10" wheel/245mm Hoosier R7 tires on each iteration, giving us some good data. Other than some of our very first races in NASA in 2016, it won every time out and usually set the track record for the class. We competed with this car in 13 race weekends, including 11 with NASA and 2 with SCCA Club Trials.

    We weren't quite doing the MSR-Cresson 1.7 testing in stages like we do now with our other builds (like my S550 Mustang and our FR-S), as we didn't get a "baseline stock" time on the OEM suspension and didn't go back to that track after every round of mods. But we did make some headway with the lap times, dropping almost 4 seconds there starting with the PSS9 setup to the MCS RR2 setup, on the same tires. Not bad. And there was time left with the aero setup - just didn't get to run it here with good conditions.

    Lap Times at MSR-C 1.7 CCW
    • 1:27.604 - NASA at MSR-C, March 12, 2016
    • 1:24.566 - SCCA Club Trials at MSR 1.7 CW, May 7, 2017
    • 1:23.789 - NASA at MSR-C, March 11-12, 2017

    The attitude of the car changed a lot from the earliest events (above left) to the later MCS setup (above right), before we even got into aero. I'm more than a little disappointed that we had to endure a sudden point penalty for this chassis right as we got underway, as we could have run full aero in TTD class before the * was added to this chassis - and that would have made the 2016-17 TTD seasons a LOT more fun. Still, for what the class allowed, I'm happy with the results and some of those TTD records will stand forever, as the class has been ended at the end of the 2018 season.


    In early November 2017 a buddy called and said he knew of a widebody E46 coupe for sale. It supposedly had a full Flossman body kit installed, like the one shown below. It also had ultra-light carbon doors, a carbon roof panel, and came with an E46 M3 rear subframe. This is what this body kit looks like, when done right:

    This is NOT the car I purchased, but rather a good example of what this body kit looks like on an E46 Coupe

    That could hold some serious tire. So I went to go see it. It was buried in a storage unit under a mountain of parts. That made it hard to see all of the details, but the price seemed appropriate for what it had. I could tell the front nose needed a lot of work, and the floor had been modified for a side exhaust (not my favorite mod), but it looked like it was all there.

    Once I had picked up the rolling chassis I could see it had some work that needed to be re-done. Super tall tires from a 5 series were rubbing the "undertray" (which we will cut off and replace with a splitter), so it was hard to steer. But it does have the real carbon doors, and some good bodywork on the flare install. Probably going to have to swap in the floor from a donor car to fix the side exhaust stuff, oh well.

    Yes, it looks very ugly in its natural multi-color paint right now, and sits up like a 4x4, but I have a vision! The carbon roof panel wasn't installed completely and needed some help to go on all the way, but this post is running long so I will show that work next time. Everyone else at Vorshlag thinks I am crazy for buying this one, but my plan is simple: perform an LS swap, add MCS coilovers, 315 mm Hoosiers, cage it, add some aero, and put this one up for sale when its wrapping up.


    Its sad to see the "Fireball" 330 go, but with the TT4 rules changes and other new projects we have underway already we didn't have a place to race it - and the new owner is enjoying the hell out of it.

    As I am wrapping up this post, we might just have two more E46 Coupe chassis I am doing a deal for. So we should be starting a Spec E46 build with one of those two -or- the slick top white 330Ci chassis I already have. One of two new 330s (the running/driving silver one) could provide a major solution for our black 325Ci daily driver, to. I will continue to show all of our E46 related builds and repairs in this thread. Look for a new post soon!

    Thanks for reading,

    Leave a comment:

  • Fair!
    Re: Vorshlag BMW E46 - Daily Driven Track Car Project

    continued from above


    Since the E46 was driving better, I went ahead and asked Brad a couple of days later to do a few clean-up tasks, to make this car look a little nicer. He spent about 3 hours to knock out the following.

    The headlights looked great, the leather was conditioned inside, carpets were vacuumed and the car was washed. Amy has been driving the car for the last 11 months. The transmission works, but there are still some other issues with it. It drives fine, and gets her to and from work, which for now is good enough. But we have more work to tackle...


    One of my least favorite things on E46 BMWs are the factory cup holders. They suck, and are made for itty bitty cups, or small European soda cans. After time the spring clips that hold the dual cup holder insert into the center console wear out, and the spring loaded tabs inside the cup holders that gently squeeze the tiny little cans wear out. So if you have a teenie tiny can in there, corner hard enough, the can flies out. Or the whole cupholder assembly pops out of the center console, along with whatever was in there. Both situations are irritating.

    This car had a very worn out set of cup holders, and they kept falling out when cornering with a drink in place. Not cool. so I ordered a new OEM setup and popped them in place. But it was still pretty much worthless unless you had an 8 oz can or small drink cup.

    But to hold American size cups - like this Yeti-ish insulated stainless cup - we needed something bigger.

    This "Swigzy" cup holder "extender" works great. The bottom section can fit into the tiny E46 cup holder openings, then you can rotate the upper section and these ribs extend out and lock it into place. The upper portion can hold a giant cup - or your wallet,phone, etc. Very handy.


    A few weeks into daily driving Amy ran over a massive pothole and bruised a tire and bent another wheel. It was really a big "heave" in a concrete seam she ran over, but luckily the rest of the new suspension took the hit like a champ.

    I ordered two new tires (245/40/17 Firestone Firehawk 200 TW) and had that wheel straightened and refinished.

    These tires work really well, and in fact some endurance road racers have started using these for competition events. The Firestones were cost effective, ride nicely, and have great grip. The new stock suspension parts have made this into a very nice riding, decently handling little coupe.

    Dilemma - so the 2nd ZF auto trans is slowly dying, and you have to baby it to keep it from slipping. The CELs won't go away because they are tied to the slipping trans. this car also has a lingering "ground problem" in the lighting circuit, so the headlights/tail lights/brake lights are all dim. Gotta chase that bad ground. I have too much time invested in this for a slow, slipping trans, CEL lit car we can't drive at night because of the lights.


    Like I stated in the intro, we won the TTD class for 2017 with this car, scoring a perfect 800 points (with drops) for the class. We won every NASA event and even an SCCA Club Trial in this car this year. For NASA we set the TTD track record at MSR-C (both days), set new TTD track records for both the CW and CCW course at Hallett, set the record at TWS (both days), we went to MSR-Houston but it was a wash out (after the track was flooded during Hurricane Harvey), and then - since we had the TTD season wrapped up - we switched to TT4 for the last NASA Texas event of the year at NOLA (and won both days). We won TTD class by the largest TT class win, 645 points, and never lost a single event. It was a perfect season!

    What I had planned over the winter for this car was fairly monumental... I wanted to make this car a real TT4 car, built to the limit of the power-to-weight rules, max aero, go to a wider tire, and more.

    We were already deep into a radical stroker M54 engine build, had planned a custom "average power" tune with a stand alone EFI system to keep the car in TT4. I got wheels and tires to upgrade to 275/40/17 Hoosiers. Found a dry sump oiling system for an S54, which we could retrofit to the M54. And of course started on a complete re-spray of the car using the same Hellrot Red.

    The reality is that TT4 rules changed enough to prevent almost all of this for happening. Once much of our car was made illegal for TT4 we "pushed" on some of this work, other than the re-paint. Let's cover some of this...


    The "nail in the coffin" to further TT4 prep on this 330 was the significant rules changes that were made to ST4/TT4 at the very end of 2017, after only 1 season of this class being in existence. We will cover what changed, and how it affected our car.

    Apparently seeing our car's aero in TT4 prompted some changes to: wing endplate rules, splitter measuring rules, wing placement rules, and more. This was "not what they intended" when they wrote the limited aero rules for TT4. Even if we were deemed legal for the NOLA event, they told us that none of this would be legal for 2018.

    We only did what anyone building to the limit of a class would do - built to the extent of the rules. Can we help it if the rules didn't describe what was desired? It's not like we exploited loopholes or poorly written rules. We maximized the splitter, endplates, and wing placement for what was written. They didn't like that. So right away, none of our aero would be legal for 2018. It would all have to be redone, from scratch. After ONE RACE! I was less than thrilled.

    The other rule change that caught us out was the "standardized tire measuring tools" introduced for 2018 - a bit of a radical move that caught out a lot of racers. No longer would the tire size stamped on the sidewall matter - you would have to measure your mounted wheel and tires with some standard tire checking tools...

    This was done to reign in some tire makers that produced sizes that were wider than the numbers indicated, and to prevent racers from "stretching" a tire on a wider wheel to get more tread on the ground. If you have followed other builds we have done over the years, you might know that I am NOT a fan of skinny tires, but these rules changes were made to "keep costs low" and to prevent racers from using wider tires. The TTD build was always difficult for me, just having to use a 245mm marked tire...

    Of course for both our TTC Corvette and the TTD E46 builds we had done BOTH of those things to exploit tire rules: we picked the widest 245mm tire Hoosier makes (the 245/40/17 R7) and put them on 17x10" wheels for this TTD build. And we had just gotten a second set of 17x10" wheels made for the 2018 season, to have a set as "scrubs" and the "stickers" ready for when we needed more performance.

    I had planned on stepping up to 275mm tires for 2018, which on paper are "legal" for TT4 - but there's no way to mount them and fit within the class limit 282mm wheel checking tool (I bought a complete set of these tools late in 2017 to figure this out - too late). So I've got sticker 275s that I bought, and a 2nd set of 17x10 wheels for them now. Yay.

    So now we had built a car for a class that no longer existed - at least not with any of the mods legal for 2017 done to it. The reasoning was to allow the "Letter" classes to be gone for good in 2017, so the "new for 2017" ST4/TT4 classes needed to line up better with the new for 2018 classes ST5/TT5 as well as and 2019's ST6/TT6 classes.

    I get why they made the changes, it just didn't make me very happy to prep for a class late in 2017 and have exactly ONE RACE in this class before major changes came down the pipe. To be TT4 legal we would have to completely remake the end plates, radically alter the wing's fore-aft placement (brand new uprights), the front splitter would have to be completely remade and get much smaller and we would have to get new wheels to make even the 245s legal, forget about the 275mms I bought.

    This car was already WAY down on power for TT4 in 2017 (we were even down for TTD), and without a radical M54 engine build I'd still be down on power for 2018 PLUS we would have to make all new aero that would make less downforce. And no additional tire over TTD, and in fact less tire with narrower wheels I'd have to buy. So we would have to spend a lot of time and money to go slower. I already had the car at the painter's while all of these rules changes were coming down, very late in 2017, and I was unsure of what to do...


    I had hoped that my partners at the engine shop I am a part of would be more excited about developing BMW M54 or S54 engines - after initially being on board with these plans, I had rounded up heads and engine cores for development work, a complete dry sump oiling system, bought some rods to test with, paid for a test crank to check maximum stroke, paid for some tooling, etc.

    There is untapped potential there in the aluminum block M54 (215 hp stock) market. A few overpriced, underwhelming options existed for rebuilding an M54, but most folks just tossed them in the scrap pile and put in junkyard pullouts when they had a problem. We had a test crank made with a different stroke on each cylinder, then a forged aftermarket rod and piston we ordered that we tested in each bore. We had a pretty remarkable stroker combination that we were on the trail of... problem as it was going to be expensive. And the M54 intake, cams, valves, and ports all needed major upgrades to keep up with the added displacement. And the factory EFI was likely unable to support the programming. It was quickly turning into a very pricey unicorn kind of build. Would anyone else ever buy one? All of the development costs were on me.

    So I rounded up an S54, above. These have a heavier iron block but the block is taller, so we could add even more displacement. The S54 cylinder head can support more power (333 hp stock), but it would still need porting, valves, cams, and more. I got the dry sump setup for the S54, and we had lofty goals in mind. But my partners were much more interested in working on LS engines, late model Hemi, Viper V10s and Ford V8s. Can't really blame them, though. There is SO much more potential in any of those pushrod V8 engines than any BMW anything... dollar for dollar we could make a LOT more power with an LS V8 than an expensive, high compression, high revving BMW inline 6.

    With TT4 now out of sight for my car for 2018, I scrapped both the M54 and S54 stroker engine projects for now.


    After the November track test I was not "feeling it", and 2018 was looking like we might be further off the pace with the revised TT4 class rules, but at least the car would look good!

    I always intended for this car to look good - to represent Vorshlag well - but we had thrown a lot of changes at the body in 2017. We now had a raw carbon hood, 4 black flares, a bare aluminum splitter, a raw carbon sunroof, unpainted E46 M3 nose, black plastic race roll air dam and tire fairings, and raw carbon wing with bare aluminum endplates and uprights. It was time to get everything painted or coated.

    I found these E36 M3 style side mirrors that fit an E46, purchased those. The plan was to replace the OEM units after I had popped off the driver's mirror when I touched the wall at NOLA. Bonus: the two mirrors dropped 3.4 pounds from the stock power mirrors, and they produce considerably less drag.

    The new mirrors worked out well, but the eBay quality showed when it came to mounting. A bit of work was needed to install them (one of the mounting holes wasn't there), and of course we lost the remote power mirror adjustment. One of the front lower control arms was knocking again, so a Lemforder replacement was ordered and installed, too.

    We were not expecting the major aero/rules changes, so the car was already torn apart and being painted when the rules changes came down very late in 2017. Normally we'd try to make the late January 2018 event that kicks off the NASA Texas calendar each year, but with the new rules making all of our aero work illegal for TT4, I told Heritage Collision to not hurry the paint work.

    When I picked the car up in early February 2018 the paint made the car look AMAZING in every way. I was still unsure of what to do with the car, but at this point I had to do something since we had invested so much into it at this point. TT4 was out, and a build for TT1/2/3 would take even more radical aero and likely (if I was smart) an LS V8 swap.

    While I was deciding what to do with the 330, I had the guys clean up the tubular bumper beam/splitter strut mount and shoot it with silver paint, then reinstall that.

    continued below

    Leave a comment:

  • Fair!
    Re: Vorshlag BMW E46 - Daily Driven Track Car Project

    Project update for October 15th, 2018: Somehow 11 months zoomed by without an update to this E46 BMW development thread. I kept meaning to post something, but things were moving pretty fast this year, and lots of things kept me from writing this until now. Some rules changes enacted because of our latest modifications ruined our 2018 TT4 plans for our red 330.

    So far 2018 has been a busy and tough year, for me and the business, but some long term plans appear to be heading towards the goals we set. We bought land, built a brand new shop, moved the business in a short period. I also bought a new for development + NASA TT (the 2018 Mustang GT, shown above), but also bought some more E46 chassis as well. New equipment at the new shop gives us some more capabilities, and we had some staff changes.

    My red 330 "Fireball" coupe (above) went through some cosmetic changes over the 2017 winter. This car won the NASA Texas Regional TTD championship for 2017 (by a huge margin), and we had moved to TT4 late in the season. While paint work was underway last winter, a big batch of rules changes came down that made all of our TT4 prep work illegal. Since I have to change up my personal cars regularly, to be able to develop new parts, the red 330 was sold this past Spring. I already miss that car...

    Left: Widebody/carbon door/carbon roof E46 coupe I bought (V8 build). Right: My slick top 2001 330Ci (SE46 build)

    Do not fret - we have a half dozen new E46 chassis coming in for various work, and some of those will be complete race cars we build for future customers. Long ago this forum thread outgrew our initial TTD E46 build (Jack Daniels) and since then we have shown various E46 BMWs that we have built, worked on, or raced. Some new E46s have been purchased this year, including the widebody E46 coupe shown above left, which already has carbon doors + roof and a big set of flares on it already. We have some nasty plans for that, plus other plans fpr the slick top white 330 Coupe, and possibly a Z4 (which has E46 bones) as well.


    Let's pick up where the red 330 left off, 3 weeks after the wins at NOLA in late October 2017. The car was working well so on a cold and WINDY Saturday member day, Amy and I took the car to MSR. We had just swapped out the OEM mirrors for some cheap E36 M3 style side mirrors, to replace the one I busted at NOLA (read about that work below). That was the only change from the last round of work.

    Event pics:

    My hope was to reset our best lap in this car on the 1.7 mile MSR-C CCW course. I had ran a best of a 1:23.789 back in March at the NASA event, in TTD trim, with zero aero. That day had nearly perfect conditions, and I had two days / 8 sessions to set that best lap of the weekend (and set the TTD record). We hadn't run at MSR since March, and never here with the TT4 aero. This is a track that normally responds well to aero downforce so I had high hopes.

    I went out early and had a relatively clear track. But it was very windy - and I think that was what was upsetting the car in some corners, badly. There were head winds, tail winds, but mostly cross winds. This made the car a real bear to drive and it felt like the "full tilt aero" wasn't helping me that day. Unpredictable, changed through the corners, etc. Bitterly cold with the winds, too.

    I went out in the first session and drove 11 laps, but only ran a best of a 1:24.079. Track temps were good, I wasn't fighting traffic, had no excuses other than the cross winds. The tires were fairly fresh, and I felt like I pushed the car to the limits, but I was just a hair slower than the March times. With the high winds Aero was a detriment that day. Other folks in race cars said the same thing that day. I watched my video and didn't see any major mistakes, just wasn't that fast.

    The inside front tire is off the ground here - and there's a lot of bodyroll

    There might have been some impact on loading of the chassis from downforce, it just wasn't consistent on each corner, because of wind direction. As you can see above, the inside front tire above was off the ground in Big Bend, possibly due to DF loads. If we had stuck with this car much longer we would need to increase spring rates a good bit. We saw similar amounts of "chassis compression" at NOLA as well, right after adding the aero. Adding wings and splitters usually requires spring rates to go up by 25-50% or more - with dedicated track testing trying new spring rates.

    Amy went out in the next session in the 330. I kind of hogged the car for many NASA events this year, and she didn't even make any laps in it at NOLA. As a "team" entry she could have, but we were focusing hard on securing a 100% win record for the year and resetting all of the TTD track records for the 2017 season - which we did. She more than deserved some track time today, and I wasn't sure if there was much more in the car with me driving.

    She went out and ran a 1:29.070 after driving for 13 laps. She had fun, but was further off my pace than usual. She hasn't driven a car with real aero since 2015, and the windy conditions gave her fits. It usually only takes a single coaching session with her to get her times within 1-2 seconds of me, or closer. With only 1 session under her belt, she was happy with her times.

    At this point I was super frustrated with my times. The wind wasn't letting up and was going to be there all day. A customer and friend, Scottish Joe, was there with his 2017 Corvette C7 Grand Sport. I hadn't driven his C7 here since August 2016, where I ran a 1:21.89 lap on the OEM MPSS tires. On this day he was on some 300 treadwear Continental street tires, so I suspected it would be slower than the Michelins it came with stock. Joe asked me to go out and set a lap to benchmark by, so Amy hopped in and we went out for 5 laps.

    The extra horsepower this LT1 V8 produces was downright addictive. Just horsing around I put in a best lap of 1:22.322. Sure, it was a hair slower than when I ran it a year earlier on better tires. This car was 1.7 seconds faster than my 330 race car with aero, in stock form and on not ideal street tires, with a passenger. And it was just super easy to do. Horsepower just makes every car better.

    Going faster in a bone stock LT1 Corvette that weighed 500 pounds more, on street tires, made me much less enthusiastic about this M54 powered BMW. As it turned out, this was the last time I ever drove this 330 on track. Its a little sad to end my time with a car on windy, cold test day that didn't pan out like I had hoped.


    Let's skip over to one of the least impressive E46 cars we have in the fleet - our black 325Ci Daily Driver automatic that my wife has been driving for the last year.

    In the last post we showed a lot of suspension, gasket, wheel, battery, and DISA valve repairs on this car. Shortly after getting it back on the road the transmission started slipping. This car has the ZF automatic - which has outrageous rebuild prices ($4000!), which was more than the car was worth. What to do? There were some Check Engine Light (CEL) codes but we couldn't read them with our OBDII scanner.


    Step one was to try the easy fix - fresh transmission fluid and a transmission filter. Sometimes a bunch of funky fluid and a clogged filter will cause the trans to shift funny.

    Brad dropped the pan and drained the fluid. Looked like old fluid, maybe original. Pulled off the older filter and rounded up a new one.

    The transmission pan was cleaned, a fresh gasket went on, and the new filter installed. A case of Motul ATF VI synthetic fluid was added, the car started and the fluid level was checked. Time for a test drive.

    Still slipping, badly. Hmm, not good. CEL was back, and again we couldn't read them. This isn't really our area of expertise, so we took the car to a friends BMW repair shop nearby. Michael from Eurauto hooked up to his fancy BMW code checking computer. Code 049 and 053 above had to do with the transmission.

    After talking to Michael and another BMW repair shop owner, it was time for a transmission replacement. The rebuild costs were sky high - I even called a friend with an Eagle Transmission franchise. There was no affordable way to rebuild this ZF automatic. Repairs that cost more than the car is worth - this is the ugly part of German cars ownership sometimes...


    I started calling around and a correct E46 ZF auto pullout was found from a friend who owned a BMW repair shop. I horse traded some parts for this used trans, shown below. In hindsight maybe we should have done a little more work and converted this car to the 5-speed manual, but such is life...

    We cleaned that up (pressure washed), swapped over a wiring harness from our car's trans (that was busted on this unit), and the torque converter as well (our car's looked to be in better shape). Here are the technician notes from MyShopAssist on this work:

    MSA: R&R Transmission - Technician: Aaron - Time: 7.23 hours
    Filter Swap + R&R Transmission - 11/6/2017

    -Change fluid and filter in original trans
    -No change, still throwing codes and slipping
    -M12-1.75 x 75MM hardware needed (stripped/stuck), Qty:2
    -Chase M12x1.75 tapped holes in block
    -Power wash replacement pullout trans
    -Repair loom on P/N safety switch/gear indicator on pullout trans
    -Swap existing convertor into pullout transmission
    -Install new transmission mounts
    -Snug oil pan bolts (small leak present)
    -Rear main seal dry, do not R&R
    -Add new filter, pan gasket, fill with fluid, test drive

    Of course nothing is ever easy. Some knuklehead had buggered two holes in the block - probably the shop that did the $800 starter replacement for the previous owner. Since there was still a known oil leak (small), I asked Aaron to check the rear main seal and replace it, if that's where the oil leak was coming from. We had already changed all of the leaky top end engine gaskets in the last round of work. As you can see from his MyShopAssist notes above the rear main was dry - so its gotta be the oil pan gasket. The leak isn't huge, just annoying.

    Yet another new trans filter and another case of Motul ATF fluid went into this used transmission.

    A new driveshaft bushing (guibo) was installed when the driveshaft went on, and Aaron wrapped up this trans swap. The under tray was cleaned up and reinstalled. Fingers were crossed and I took it for another test drive - which was better, but not 100% better. It still throws some codes but the trans is functional. As long as you don't abuse it, it won't slip. For now.

    This is why I hate doing "junkyard swaps" with used parts - its the same work as putting in a new part, but sometimes the replacement used part is not 100% right. This is part of the fun of owning older German cars...

    continued below
    Last edited by Fair!; 10-16-2018, 03:20 PM.

    Leave a comment:

  • Fair!
    Re: Vorshlag BMW E46 - Daily Driven Track Car Project

    continued from above

    I came into the pits after that session exhausted - I had ridden with my HPDE1 student in 3 sessions, took him for a ride in a HPDE4 session, rode in one session with Amy, and drove every lap on all four of my TT sessions that day (9 sessions). The cold weather sapped our energy as well.

    We cleaned up, locked up but left the car out for the night with the windows up, then went to the awards banquet. They had some crazy good bar-b-q served up from a food truck outside and we went into the massive clubhouse to hear official results - which for once would be a total mystery. Did we finish 3rd? 2nd? Worse? Nobody knew.

    Once we got our food we went upstairs in the clubhouse for the awards. The race director was reading off the TT results and lap times, and apparently he was looking at the wrong column (2nd best times). He read them in the right finish order, so there was some confusion. When he read off Dysen as 2nd and me as first for TT4, I was in shock - mostly because the times he read off were not our best. Turns out the official times had us a tenth of a second apart, with my 1:56.347 lap taking the win out of 5 in class vs Dysen's 1:56.441. That meant 2 Hoosiers, woo! I was loving that luck, but figured Sunday would be the inevitable TT4 blood bath. The S2000 mafia that swarms these events is pretty industrious and they tend to fix all manner of issues quickly. There was also rumor of a V6 swapped S2000 showing up to run TT4 on Sunday that Dysen would co-drive.

    Amy drove two sessions that day and had a blast, and the car did great. We had battery issues on the vidcam but did get my best lap Saturday, just none of my Sunday laps. I also had some issues with the shifter, on both up and down-shifts, that ruined a few of my best laps. We will address both of these things next season.


    After sleeping for ten hours the night before (tired!) we woke up early, packed up the hotel room, and headed out Sunday morning to the track. The day started out a little warmer and the sun was out. More drivers and instructors meetings, then I worked on getting my student a check ride (he was more than ready for solo).

    It was still 47F in our first session but the wind was down so it wasn't painfully cold. Most importantly the track was completely dry now and times started to drop. I was gridded P5 so I didn't have much traffic to deal with, which was a nice change. I was behind the two fast TTC cars and could keep them in sight. And while they both ultimately ran better times than TT4, you have to remember - TTC allows many things that TT4 does not, and these "dyno reclass" builds are going to be a thing of the past next year as TTC goes away. They have been fast all year, no doubt about it, but we will see if these TTC cars get faster - and by how much - next year when they all move to TT4 or TT5.

    That day I ran the first session hard and found a 1:55.975. Dysen's co-drive in the "S3200" (see above) never materialized - they had all sorts of issues on that car - but the owner did enter, ran at least one session, and made some 2:00 laps on street tires. Another M3 came in second but 3 of our entrants from Saturday dropped out, so we only had 3 cars in TT4 with times on the results sheet Sunday (so no Hoosier payouts).

    I went out in the next session looking to run a lower 1:55 lap (a predictive 1:55.8 time popped up earlier) and I started getting greedy with the exit "gators" on T16. I would take it wider and wider out of this last turn before the pit straight to try to gain a tenth, but it wasn't working. I ran a string of 1:56.0 laps then I took T16 exit a bit too wide and clipped the tire wall with the side mirror - BANG! Damn thing popped right off the door mount, hanging from the wires, but did zero damage elsewhere on the car. Whew! I got lucky. I held the dangling mirror in my hand for the next lap of shame and came in...

    Amy had seen and heard the whole thing from the bleachers at the exit of T16 - and she was none too pleased that I almost joined the "Wall of Champions" that had claimed other cars this weekend. I clipped the mirror wires, tossed the busted mirror into the trailer, then went right back out to take my nephew for a few laps in the next DE session. After that the car was all Amy's, and she did take another session that day, running her best lap of a 2:01.0 before we called it a day.

    By this point we had "found the time we were gonna find" and the ambient temps were climbing, while other TT cars slowed down or dropped out due to mechanical issues. One of the remaining TTC S2000s clipped another bit of armco and busted a wheel bearing. Another TTC S2000 broke their trans. Amy had dropped 10 seconds from her Saturday morning times and I found 2 seconds from my best Friday test time. My brush with the tire wall was enough of a warning to "not push my luck", plus we had an 8+ hour tow home and work the next day.

    We stuck around to watch the Blitz race group's last points race for the year, where our customer Jamie wrapped up first place the NASA Texas ST3 Championship - in his rookie year - which was pretty cool. He had "hit a gator" during the first race on Saturday and tore up the front end - but still finished the race. A bunch of us patched it up before the next race, which he went on to win and as well as the points race on Sunday (the car is at our shop now getting fixed up, better and prettier than before).

    We watched the Race Hero live timing app on our way back to Dallas and the 3rd and 4th TT sessions on Sunday didn't throw us any curve balls, so we won on Sunday as well. With only 3 in class there were not contingency payouts from Hoosier, but just winning the 2 tires Saturday was a nice change. The Sunday win had half the class out, but it was still another win - which meant we went 10 for 10 TT first place finishes this season (8 in TTD and 2 in TT4).


    Overall this was a great race weekend but there were some exceptions. Running with the NASA Texas group for 11 years now I have gotten used to things being done a certain way. Here are some of the things that jumped out at us.

    The bad: There were a lot of incidents in various race groups, and some of the extractions took longer than they anticipated, which led to some delays. We had a lot of 20-30 minute delays sitting on grid after a 3 minute warning in TT. So the schedule was hit or miss. There was also some small level of disorganization - probably due the large number of Texas region folks that came to this "dual region" event. All of the W2W racers were jammed into two groups so they complained of traffic, but that's not my group. Long drive down on some fairly crappy roads, but it was all still well worth the trip.

    The good: The food at the banquet was excellent, and the clubhouse, track, and facilities were top notch. Everyone from NOLA was friendly and welcoming. There were autocrosses going on both days on parking lots within the facility, and some of the TT folks did some karting Saturday night, too. We had no traffic problems on track in TT this weekend, due to gridding so well Saturday and the car just being faster.

    Our 330 was sitting from 3rd to 6th on grid all weekend, which was a nice change. We beat the ST4 track record time but I was 1.2 sec off the TT4 record time, but we did outpace the car and driver that set that record earlier this year. Dysen had run a 1:51.2 in TTB last year but seemed to have slowed down in TT4 trim (just like I think how some of the other "letter class" cars might slow down in "number class" trim). Compared to the TT3 record our TT4 time was too far back, and the TTC record was smashed this weekend, but comparing to C isn't an apples-to-apples comparison. Jamie set the ST3 track record in his last lap of his last race, where he found a bunch of time in the high speed esses (his car has aero).

    The 330 definitely picked up a good bit of time with the added aero, which makes me think that next year we might be more competitive - with less weight, more tire and a lot more power. We shall see - I'm excited to to find out!


    I've got a track test scheduled at MSR-Cresson for this car in about a week, so we'll see how much time the car picked up at our regular test track from our last set of laps there, again on the 245mm R7 tires. We have a major round of "power upgrades" scheduled for our winter break, and the preliminary 2018 NASA Texas Schedule is posted:
    • January 27-28 Season Opener MSR Houston
    • March 10-11 March Madness MSR Cresson
    • May 4-6 - NASA at COTA!
    • June 9-10 Summer Shootout Hallett
    • September 13-16 - NASA National Championship - COTA!
    • October 27-29 Crossover event at NOLA Motorsports Park

    There might be another event or two added in the next month, too. Hopefully we will have completed the TT4 power mods by then, but there's not much of a break before 2018 season starts. We're back at it before you know it!

    Until next time,

    Leave a comment: