Go Back   Vorshlag Motorsports Forum > Vorshlag Motorsports Discussions > Vorshlag Project Cars

Thread Tools
Unread 05-15-2017, 03:34 PM
Fair!'s Avatar
Fair! Fair! is offline
I blame the internet
Join Date: Jul 2004
Posts: 6,081
Default Re: Vorshlag Build Thread - 69 Camaro Pro Touring/Track Car

continued from above


The triple reservoir Tilton unit shown below will contain fluid for both brake master cylinders (front and rear channels) as well as the clutch hydraulics. A custom aluminum bracket was fabricated and two threaded pylons were welded to the cage dash bar.

These two pylons protrude through the dash panel, but after the two mounting bolts are removed the center dash panel can be unbolted and pulled out of the way for maintenance behind it.

These remote reservoirs are popular in racing - you want to mount this just far enough away from the driver to not be a hazard, but close enough to be able to see fluid levels. Levels can drop from either pad wear (over a very long stint) or due to a leak in the hydraulic systems. Always good to have that visible while driving. We will plumb these to the floor mounted pedals/masters later in the build.


Most of the aluminum interior panels were built over 4 different days. These are needed to separate the passenger compartment from the exhaust, driveshaft, heat and noise from the engine bay. This, along with the firewall panels, forms a barrier from hot fluids and fire ahead or underneath the driver, in case something goes awry. The tunnel sections near the driver will be double walled with insulated panels on the inside, to limit heat transfer to the cabin. We will show the inner panels at a later date.

Previous sections in this series of posts showed some of the interior panels going together, and in reality there were several tasks happening at once - tubular structure, defroster, dash mounting, reservoir mounting, firewall and interior panels were concurrent tasks - but I am trying to show them separated here for clarity.

Templates in cardboard were made for various panels. These templates were then transferred into 3003-H14, .063" thick aluminum sheet. These metal panels were marked, sheared, bent, trimmed, deburred, fitted, and then drilled for mounting holes. Depending on the location the panels will be either riveted or bolted in place.

Step by step each template was turned into an aluminum panel. The picture above shows how some of these panels join to the composite dash. The passenger foot well area is also very different than the driver's side, to clear the massive dry sump oil settling tank, which has a complicated firewall structure around it. There is still tons of leg/foot room due to the front seat setback.

This is a close-up of how the dash was trimmed to fit against the taller than stock transmission tunnel structure and paneling. It makes for a very nice fit, once complete.

The complex shape around the exhaust header on the passenger side was taped together at first. These sections were then tack welded in the car, removed, and fully TIG welded on the bench to make a single panel. The shape of these panels will give the most interior room and allow for the unique, above floor exhaust routing.

Additional interior panels behind the driver compartment are shown in a later section. Plus there was some bleed over of work from the firewall panel fabrication in the interior panel task, due to the complex nature of the dry sump enclosure, which I will show below.


The firewall paneling took a chunk of time, but there was also a steel upper cowl structure being added, as well as the side sections that joined the firewall to original front unibody sections (under the A-pillars). Not to mention the complicated panels around the dry sump tank. I've broken up this task into sub-sections, which spanned over 5 different days of work.


The first main firewall panel was the biggest and easiest to make. Big flat section that covers 80% of the firewall. That was made from the same .063" aluminum 3003 as the interior panels, which is appropriate for fire protection, strength, and weight.

This was clamped to the square steel tubing added previously, which replaced the rusty OEM cowl section starting from about 4" below the base of the windshield.

An outer section on the driver's side was bisected to go around two chassis/cage tubes ties into this main flat panel section, shown above. Moving the engine back significantly required these custom firewall panels, of course.


Part of the new tubular cowl structure had been built when the car was still on the chassis table, shown below. But there were still large open gaps between this section and the forward portion of the unibody, as well as at the vertical edges. We needed some metal paneling here to keep air / fumes / fire / fluids from coming out of the front fender wells into the cabin.

We also needed to strengthen the original sheet metal that makes up the door hinge structure right behind this pair of panels. The side panels below were patterned, cut from 16 gauge steel sheet, then bent and added to tie this upper square tube firewall structure to the rest of the Unibody and hinge structure.

These steel side panels work to join the custom aluminum firewall with the original structures, and strengthen the door hinge areas as well. These were later welded to the tubular structure and door hinge sections.


The cowl section this car came with was a modified version of the OEM parts, but clearance for the set back engine was too tight. It was also hacked up, rusty, and needed complete replacement.

The remaining OEM section of the cowl is there to give the windshield a place to seal, and it has been blasted, primed and painted.

We needed to join this to the new, tubular firewall structure with a steel panel that has several compound curves and bends. Like the side panels above, it will be welded in and gives additional structure to the windshield base.

Steel was the right material here, since it needed to be welded to the OEM windshield section at the rear and tubular structure forward. Each curved section was patterned in tape, pulled off in sheets, and transferred to steel. It was then cut and formed to fit.

continued below
Reply With Quote
Unread 05-15-2017, 03:46 PM
Fair!'s Avatar
Fair! Fair! is offline
I blame the internet
Join Date: Jul 2004
Posts: 6,081
Default Re: Vorshlag Build Thread - 69 Camaro Pro Touring/Track Car

continued from above

Pockets were also added for hood hinge clearance, which were initially taped together during fabrication. We had tried to use OEM style hood hinges previously but they are MASSIVE things that would have touched the 315mm front tires at full lock, so these pockets will allow for simple hinges that take up a lot less room.

These steel panels were tack welded to the remaining factory cowl section, strengthening the base of the windshield area. Clearance around the two windshield wiper motor posts were also added, which is shown in more detail below. This cowl area will be final welded to the sheet and tube sections in this area for strength and fire proofing, but mostly hidden under an (aluminum) OEM cosmetic upper cowl panel.


The dry sump tank area is fairly sizable and a mount was built for the dry sump tank earlier. Now it was time to make a metal firewall enclosure around this tank to seal it away from the passenger cabin. All of the remaining OEM steel unibody structure around the tank has been blasted, primed and painted, so ignore the rusty picture (below left) from earlier in the project.

This dry sump enclosure had a complex shape that required more than a dozen individual panels to complete. The tank had to come out a few times to make room for patterns and panels to be built, step by step.

Some of this enclosure was built into the interior panel section above as part of that task. Again, many of the tasks shown in this update were built concurrently - parts were fighting with each other for space.

Several cage and chassis tubes pass through the top of this "box" around the dry sump tank, so those panels had to be bisected around each tube. The dry sump tank has a lower drain fitting, so a hole in the bottom panel was added to facilitate draining during oil changes.

The end result looks great and works well, but most of this will be hidden under the composite dash or the cowl. It still needs to be there to seal the cabin from fire / fumes / fluids, of course.


Using the OEM wiper motor and heavy, complex steel drivetrain wouldn't have possible with the setback of this engine & firewall, the taller tunnel structure, and the aftermarket defroster box mounted like we have. We researched several aftermarket options and proposed the Bosch Motorsports wiper system. This uses "Wiper Direct Actuators" (motors) and an ECU that syncs multiple WDAs, sets the sweep angle of each, and drives the motors in forward and reverse instead of a continuous 360 rotation with linkages to reverse the wipers like OEM systems. These are used on prototypes and other racing cars with windshields.

We offered up multiple options, and at nearly one third the cost the customer wanted to try a pair of Wexco wiper motors, which give us a compact and lighter system than the single factory motor and clunky drivetrain. They make waterproof, stand-alone adjustable sweep motors that can be mounted just about anywhere. Wexco is a Tier 1 supplier of wiper motors to marine, heavy trucks, school bus, RV, agricultural, construction vehicles and other heavy duty specialty vehicles. We understand the cost barrier to the Bosch system, so we gave it a go - and we will share the results after these are wired and operational.

These Wexco motors were mounted during the cowl panel construction with fabricated brackets consisting of steel plate and hose clamps. It is pretty simple but that is how these motors are made to be mounted.

Getting their location and alignment was anything but simple, of course. These have to line up with the wiper arms and windshield, so the adjustable hose clamps will allow for some angular adjustment once the windshield is in place.

These compact motors fit under the OEM shaped cowl panel, shown above, and should look somewhat factory.

The OEM style aluminum upper cowl panel finishes off this section nicely, once the car was reassembled after the completion of the various firewall and cowl panels.


The above work tasks were completed over a few weeks, which wrapped up a lot of sheet metal and component mounting in the cabin and firewall areas.

The dash was re-assembled over the recently added defroster, wipers, interior panels and firewall. The factory upper cowl vent panel was also installed. This was done so that the hood and windshield could be installed. The oil and power steering coolers were installed, getting ready for the next steps. The wheels and tires went on, a driver's seat was reinstalled, and the Camaro was set back on the ground at ride height.

With all of these components installed we felt it was a good time to get a weight of the car, showing the progression of the build. This is with all of the drivetrain (motor/trans/Ford 9" axle), body panels, suspension, brakes, wheels/tires, seat, steering column, exhaust, and fuel cell.

Without driver or fuel it was 2103 pounds, but still showing 53% on the front wheels. Even with this much rearward drivetrain and driver offset you can see how difficult it is to get weight on the rear axle. We're not done, of course, and have a number of systems that will be added out back to help balance the bias - and adding fuel and driver weight will help tremendously.

There are still more aluminum panels necessary on the interior, as well as some "false floor" sections that will be added, but I will show that next time.

Future updates will also show hood installation, hood vents and radiator/cooler ducting, and additional tubular front structure being added. The air intake tube, air box, radiator, and steering rack will be reinstalled before we trim, fit and install the VFN composite hood.

Until next time,
Reply With Quote
Unread 10-20-2017, 03:41 PM
Fair!'s Avatar
Fair! Fair! is offline
I blame the internet
Join Date: Jul 2004
Posts: 6,081
Default Re: Vorshlag Build Thread - 69 Camaro Pro Touring/Track Car

Project Update for October 20th, 2017: Yes, it has been several months since my last installment in this build thread, but Ryan in our shop has been cranking through the work on the 69 Camaro - when he wasn't buried on another project. Again, I have him tasked to about 1 week out of every 4 on this car, so its drawing out the timeline, but its what we agreed with the owner to do a while ago. The image below is a preview of another round of work beyond this update.

This time we are showing work on a number of systems: transmission tunnel, interior panels, the front upper tubing structure and fender mounts, engine bay cross brace, radiator hoses were built, hood modification/mounting/hinges, AeroCatch hood latches, upper and lower radiator duct boxes + hood opening, and twin oil cooler ducting was built. Whew! Lots of pictures and details shared along every stop of the way.

We did drop coverage of this build on another forum, which had withered and died a while ago - a real shame. We're not giving up on forums, however - and I want to take a minute to shout out to the readers on Lateral-G forums. This a large, active Pro Touring forum that is one of the last big, car forums out there. It has great traffic with some great builds shown within. We also get great feedback from the members there. Thanks!


Last time we showed most of the transmission tunnel structure built and most of the aluminum panels installed, but there were still some work to go (see below left).

The missing panel (which will cover the external linkages on the G-Force trans) was mocked-up in cardboard, transferred to aluminum, then taped together before welding. The funky shape of this vertical panel clears the exhaust and external shift linkages and levers while leaving as much room for the driver's legs as possible.

The upper panel of the tunnel was trimmed for the shifter opening and the driver's side panel was tack welded together. We will soon add a Joe's Racing Nomex shift boot and lower mounting frame to the tunnel, sealing the opening from the interior with a fire-proof, thermally insulated boot.

The interior was readied and the seat installed for a fitting with the customer when he came into town. The Racetech 4119 seat positioning was marked with respect to the steering column angle, steering wheel placement, shifter layout and pedal locations that fit the driver. As we have said before, the driver's seat is pushed back by over a foot, and the pedals, shifter, and steering column are all adjusted for this rear biased position.


Last time we showed the structure ahead of the firewall there were several "missing links". There were a number of tubes and struts needed to help mount the front sheet metal. These are smaller diameter, weaker structures made to "fail first" in a front impact. This is common on GT style tube framed cars - make these front structures smaller than the main cage, to allow for energy absorption and pre-determined failure points in a light front end hit - ahead of the larger, critical structures of the front frame area and cage. Something gets hit, these non-critical areas bend, and can be cut out and replaced without sacrificing the larger frame/cage sections.

Ryan started by adding these larger diameter tubing reinforcements cut on an angle at the ends of the "stronger" sections of the upper tubes. This now strengthens the engine cross brace mounting brackets, which were added earlier.

With these reinforced tube sections cut, shaped, and TIG welded into the front cage structure, the cross brace was then bolted in place atop the engine. Then the fender mounting struts were built...

These two-armed structures are built from aluminum tubing with small threaded rod ends to link up the upper front cage structure and the aluminum XXX branded front aluminum fenders. These give the front fenders enough stability in the middle of their span, and the adjustable ends of these small tubes allow the front sheet metal to be aligned better.

With the engine cross brace area beefed up and the fenders tied into the mid engine bay upper structure it was time to tie into the front nose, to support the upper front panel, and give the hood a place to land some hood pins onto. The front end aluminum sheet metal needs some support, so we will add that next.

Above left you can see Ryan using a digital angle finder to show how much of a bend is needed on the front downbar layout. Above right you can see the rod end and bracket he built for this downbar will tie into.

The above two pictures show these small diameter downbars bent, welded to the rod ends, and bolted ion place. There's still one section of tubing needed.

Here you can see the final "front hoop" added in this smaller diameter tubing, which nests under the front horizontal panel that is in front of the hood. This panel is also aluminum and needed some support in case somebody leaned on this panel. But I wouldn't go putting too much force there. Its all "just strong enough" to support these panels during road racing and high speed runs. Below you will see where the hood pins mount into this section for the AeroCatch hood latches.


Much of the tubing above was designed in such a way as to not block airflow to the air cleaner and ducted hood box for the rolled C&R aluminum radiator. We ordered this radiator from their catalog, which had a core the right size for the space we needed and the inlet/outlet mostly where we wanted. It was time to modify the radiator and bit and make the main hoses to transport water to this core and back into the engine.

First the neck of the radiator and lower outlet were modified. The lower radiator hose has to route around the radiator duct box so Ryan TIG welded some mandrel bent aluminum tubing to the end to point it in the right direction. Then the radiator neck was cut off and welded closed - we will have a remote coolant reservoir mounted higher in the engine bay and plumbed in-line with the heater hoses. This is how all modern cooling systems are built, and with the radiator mounted so low on this car it would never hold water with the cap off in the original position - because the engine would be higher than the top of the radiator fill. The remote reservoir fixes all of that.

Using HPS branded silicone hose bends, some aluminum mandrel bent tubing, and good planning the lower radiator hose was built and plumbed to the water pump. It snakes around the duct box in this area. The upper radiator hose assembly was made with some long runs of tubing and more HPS bends.

Jumping ahead a bit in these last two pictures but you can see above how the upper radiator hose routes back and behind the duct box to meet up with the water pump. This C&R core is a twin pass design so both the inlet and outlet are on the same side. A single pass radiator would put the inlet/outlet on opposite sides of the core - which would would have been marginally easier to plumb, but not as efficient as the twin pass core.

With the main radiator hoses built and installed (these will be clamped and secured later in the build) it was finally time for the massive hood ducting structures at the front of this car. So much planning went into this next step... the whole front of the car was designed around this feature.


While the Camaro's owner was at the shop for the seat fitting we took the time to talk about hood ducting shapes. This is a very visually and functionally important part of this build. I grabbed some blue tape and made a few lines that were pre-set limits for the hood opening, confined by placement of engine, radiator and some other aspects. Then Stewart had some freedom to mark the final shapes for the hood opening he wanted within that confined box. This takes some extra effort, giving our customers the freedom to express how they want something to look all the while keeping it within sound engineering practices and the fabrication limits.

After a few tweaks and some changes made during this customer design meeting, the final shape of the opening was mostly set out and cardboard mock-ups began later that same day.

With the cold air inlet tube and air filter box in place the final "definitions" of where the duct box could fit were set.

By the next morning the mockup of the lower duct box was completed, along with the mating flanges for the upper duct box - that would be attached to the hood and seal with the hood down.

continued below
Reply With Quote
Unread 10-20-2017, 03:41 PM
Fair!'s Avatar
Fair! Fair! is offline
I blame the internet
Join Date: Jul 2004
Posts: 6,081
Default Re: Vorshlag Build Thread - 69 Camaro Pro Touring/Track Car

continued from above

With the lower duct box mocked up in cardboard its time to move to aluminum. We started with a full sheet of .080" thick 3003 aluminum, which is a common alloy for these formed sheet panels. 3000 series is RADICALLY easier to bend & form than 6000 series tempered aluminum!

We might have been able to use the next sheet thickness size down (.063" thick), but the .080" sheet is stronger and the final weights for these duct boxes don't add up much (12.2 lbs for all 3 lower duct box pieces).

I skipped ahead a few steps to show these weights... back to the initial construction of the main lower duct box structure.

The initial lower box sections were made in aluminum and as you can see above they slip over the swaybar, and mount near the back face of the radiator core. There is also a cut-out for the lower radiator hose. This means the duct box is not 100% sealed to the core, but it is better than most and still very effective at increasing airflow thru the core and exhausting out of the hood.

At this point the basic outer structure was in place but the "V" cut for the air tube would need more structure, and of course the upper mounting flanges are not present. But now it was time to move ahead to modifying and mounting the hood, which is where the "upper" duct boxes mount to. These will mount to the bottom of the hood then mate to a sealing surface on the top of the lower box.


The hood we ordered from VFN is fiberglass, which was chosen because it was one of the only composite hoods we could get that was completely flat. Everything else had a raised cowl, scoop, etc. On this 69 Camaro hood design, VFN incorporates the rear cowl panel (normally a separate panel bolted to the base of the windshield) into the main hood design. This is how most drag racers use this hood - as a 1-piece, pin-on design. Well we wanted to keep the wipers and a hinged open hood, and since the wiper arms mount under this cowl panel, it had to be cut off.

We knew about this issue long before the hood was ordered and worked with VFN (with drawings and measurements) to incorporate the hinges and OEM rear inner structures in the "stock location". Their mold for the underside was modular and they could accommodate this, but the upper mold is only able to make the "elongated" hood. So with the old OEM flat hood still here from our earlier mock-up phase the "cowl cut" measurement was accurately transferred to the fiberglass hood and cut.

As you can see above, the VFN "long" 69 Camaro hood was now cut down to the "stock size". The underside looks very similar to the the OEM inner structure - because they moved it forward for us when they built it to order. Now this stock sized, lightweight, flat hood could be fitted to the car with the AMD stock replacement aluminum cowl panel in place.

The AMD aluminum front sheet metal (that is all made to the OEM sizes, just stamped in aluminum) was squared up together with the hood. This took a few hours to get everything lined up and it all fits pretty well, but we'll have the body shop set the final gaps.

The air inlet tube was installed and the hood clearanced at the OEM front latch location - which was not a concern as we wouldn't be latching there. The fiberglass was ground back, little by little, to make this area clear the tube.

Making hood latches from scratch is tricky, but our crew has been planning this for a good while - remember the billet hinges we tried early on? Those OEM sized hinges were so big they hit the 315mm front tires! These are much lower profile, single pivot, non-assist hinges being built from thin aluminum plate. First the area of the hood area where the hinges could sit was laid out with tape. Then a then slot was cut into the edge of the cowl panel, where the hinge could fit into and sit flush with the top of the hood.

Next a pair of slim, single pivot hinges were built with a lateral offset forward of the cowl panel. This is how race car hoods are often hinged when the OEM hinges are gigantic, like the 1st gen F-body hinges are. The slim slit in the cowl that the hinge arm passes through will be hard to notice once all of this is painted.

Cold riveted threaded inserts were added to the recessed pockets that were designed into the fabricated steel firewall structure. This is where the back of the new hinges will bolt down.

The above left image shows the vertical part of the hinge that will be flush with the hood surface with the hood down. Most of these hinge structures will be completely hidden inside when the hood is closed. The above right image shows the lateral offset of the hinge parts where they line up with the under hood structure.


With the hood trimmed, mounted, and hinged at the rear it was time to latch the front. We have been a fan of the British built AeroCatch hood latch for some time and have used these to secure hoods and trunks on a number of cars. Watch this video to learn how these latches work and you will see why these are THE preferred motorsport hood latch worldwide.

Ryan started the layout of the latches by locating where the pins would mount onto the thin tubular "front down bars", shown several steps above. He then lined up the underside part of the Aerocatch assembly with the hood and marked that.

The Aerocatch kit comes with a cut-out template (part of the packaging) you use to mark the oval shaped hole for the cut-out needed in the hood. These were carefully measured and marked to line up with pins added to small brackets welded to the "front down tubes" under the nose. These pins are threaded and can be raised or lowered to align with the latching mechanism within the upper latch.

Since we had selected to use the AeroCatch units early on, we asked the customer if he wanted flush (under) mount or top-mount upper latches. The top mount style leaves a flange above the hood surface which better spreads the load onto a composite hood - this is what we recommended, and what he chose. For show cars or hyper critical aero applications the flush mount is often used (the red hood on my Mustang, shown at the top of this section, has that style). Then the two hole sizes in the oval were marked and cut using a vacuum to remove composite dust - otherwise you get fiberglass dust everywhere.

With the holes cut the air saw was used (again with a vacuum) to connect them and make the teardrop shaped hole that matches the template for the AeroCatch assembly to drop though.

Since this was well marked and carefully cut the latch dropped smoothly into the oddly shaped hole. Then the mounting holes for the flange were drilled, which bolt into another load spreading flange underneath. It all lined up perfectly with the pin underneath. Its really not that simple, so the first time you do this plan on spending the better part of a whole day installing two of these. The pin can be used vertically like this for a hood or horizontally for panels that slide off in a different direction. Again - installing these takes careful measurement and planning, but a good fabricator can put in a pair in a few hours. Don't rush this job or it won't line up and/or will look like crap!


Now that the hood is trimmed, aligned, hinged and latched it was time to cut a BIG ASS HOLE in that thing, to work toward our goal of a ducted hood.

This was part of the plan from the first day, but getting here - picking the shape of this very visible hole - took many months. We had the customer come in and finalize mockups of the 3D shape of the hole, which was then transferred from the initial mock-ups to the hood. There was only one final detail left to pick: the radius of the leading edge of the openings. We laid out an "A or B" choice, and the customer chose B.

With the hood in place and the final shape chosen the upper details of the "lower duct box" could be completed, and the box itself tack welded together. There was a shaped mounting flange built that would hold a sealing gasket, shown above. It was completed and now it was time to cut the hood...

There's no going back now! With the final shape approved and a pilot hole cut for the jig saw, Ryan (helped by Ryan3 on vacuum) began to cut out the shape of the hood opening. This could make or break the look of this build...

The hole is shown above and the tacked together lower duct box was completed, with the sealing gasket flange. Now it was time to make the upper duct box...

continued below
Reply With Quote
Unread 10-20-2017, 03:42 PM
Fair!'s Avatar
Fair! Fair! is offline
I blame the internet
Join Date: Jul 2004
Posts: 6,081
Default Re: Vorshlag Build Thread - 69 Camaro Pro Touring/Track Car

continued from above


As soon as the hood was installed and the opening revealed, the first thing I said was "Bigger!" Ryan mocked up a few more rear cut lines, which the curved rear edge of the upper duct box would blend into the hood. I asked him to cut it back to the farthest line - for the largest opening.

Now some cardboard was added, to show how the aluminum panels that would make the upper duct box "flow" into the hood opening. The point here is to get the air exiting the radiator to gently merge into the horizontal plane of the hood, to prevent too much airflow separation or turbulence. More laminar flow means better cooling and more front downforce. There is also a blue tape line down the middle that will make sense in a minute...

After making several "walls" in tape these were transferred to cardboard for more accurate mock-ups. The reason we opened up the back of the hood hole more was to get the curved upper duct box sections to merge more smoothly and just... "look right". Notice the spine down the middle? This is where the two openings in the lower duct box (that go around the bottom of the air intake tube) merge back together to hide the intake tube from above. This "spine" drops at the front of the hood opening, which was a design element the customer liked from a modern Ferrari race car. Somehow this look on a boxy Camaro still really works.

The cardboard shapes were reworked until everyone was happy with the form and function. With the fabricator's, engineer's and customer's sign-off it was time to move to metal. Remember - we are not a composites shop, so we would be making the upper box sections in the same 3003 aluminum. Once bodyworked and painted these parts should look fairly seamless and integral to the hood.

The cardboard was transferred to aluminum sheet and these were Cleco'd in place. The spine was mocked up using a piece of aluminum TIG welding rod to show curved vs straight, to visualize options for the spine. Straight looked better than curved.

After finalizing the spine panels in cardboard they were transferred, cut, curved, formed, shrunk and stretched into shape. Once those were shaped well and mocked up, everyone was happy with the look - it was time to weld.

There was a good bit of welding time here, and we'll need to allocate more time into "filling" and finish work in metal, but I'm happy with how the upper duct box came out.

You can see how far down the upper duct box extends under the surface of the hood in the shots above. Again, we're trying to direct the airflow from the radiator "exhaust" to smoothly merge with the hood, to keep flow as high as possible.

The lower duct box was now fully welded, which took some time. Then it was ready to go back into the car. But there were more heat exchangers that needed to be exhausted into the lower duct box - more ducting!


So remember earlier in the build where we had mounted two oil coolers to the side of the radiator? These were there to cool the power steering (smaller core, left side) and engine oil (larger core, right side). The image below left shows one of these mounted, from earlier.

These coolers are fed by air from the front of the car. The inlets come from two dedicated openings (see above right) that feed each cooler - the outer/upper holes in the dual plane splitter. There is aluminum ducting from the inlets to each cooler, but they need ducting for proper exhausting as well.

These funky looking pieces of aluminum are the exhaust ducts, which bolt to the back of the cooler mounts and then feed into the main "lower duct box" behind the radiator.

These "square-ish" ducts curve and snake from the back of these outer cooler locations and land with a quadrilateral (almost triangular) shaped outlet that mounts and feeds into the sides of the lower duct box. You can see the 3D shapes progress from cardboard to sheet aluminum to square ducting.

These are somewhat mirror imaged, but the coolers are different sizes so each side is a little unique at the cooler interface.

This shot above shows the two massive, rectangular lower duct box openings from the radiator and the two curved ducts from the oil coolers that feed into that. The massive engine setback on this chassis is apparent when you see the amount of space used by the radiator and ducting underhood.

Once these final ducting pieces were designed, tacked, fully welded and installed Ryan could move back to final welding, filling and smoothing on the upper duct box fabrication. He used the TIG to fill and smooth out the transition from the center spine to the flowing, curved sections below. Welding, grinding, sanding, smoothing - rinse and repeat. All of the visible inside corners on the upper duct box will need a bit more smoothing as well - it will look great once finished.


Well I better stop here - already getting too long. We already will have plenty more completed fab work to show for next time. The rear tubs to clear the giant 345mm Hoosiers under the stock rear fenders were all formed from aluminum and installed. Lots of interior panels were built as well - this time behind the front seats. More exhaust work was plumbed out back, too.

The flat bottom panels were completed and a rear diffuser was also built. The exhaust is routed into the diffuser box for a "blown diffuser", which we will show.

We will also show the swan neck AJ Hartman carbon fiber wing (with a giant 14" chord!) being mounted to the back of this beast.

Thanks for reading!

Last edited by Fair!; 10-20-2017 at 03:44 PM.
Reply With Quote

Currently Active Users Viewing This Thread: 1 (0 members and 1 guests)
Thread Tools

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT -5. The time now is 04:59 AM.

Powered by vBulletin® Version 3.7.4
Copyright ©2000 - 2018, Jelsoft Enterprises Ltd.